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ABSTRACT

This investigation explores the effects of chordwise forces and

deformations and steady—state deformation due to lift on the static

and dynamic aeroelastic stability of a uniform cantilever wing. Results

of this analysis are believed to have practical applications for high—

performance sailplanes and certain RPV ’s.

The airfoil cross section is assumed to be symmetric and camber

bending is neglected . Motions in vertical bending, fore—and—af t

bending, and torsion are considered . A differential equation model is

developed, which includes the nonlinear elastic bending—torsion coupling

that accompanies even moderate deflections . A linearized expansion in

small time—dependent perturbation deflections is made about a steady

fligh t condition. The stability determinant of the linearized system

then contains coefficients that depend on steady displacements. Loads

derived from two—dimensional incompressible aerodynamic theory are used

to obtain the majority of the results , bu t cases using three—dimensional

subsonic compressible theory are also studied .

The stability analysis is carried out in terms of the dynamically

uncoupled natural modes of vibration of the uniform cantilever. Dynamic

stability in the case of incompressible strip—theory airloads is deter-

mined in two ways. One is the “V—g method” familiar to aeroelasticians .

When steady deformations are present this method requires an iterative

matching of flutter speeds with estimated speed . The second approach ‘ 0
0

involves determination of the complex eigenvalues of the aeroelastic

modes at any desired flight condition. The aerodynamic loads are 
-_______
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expressed in terms of the generalized Theodorsen function; eigenvalues

of the aeroelastic system are located with a gradient search technique.

The effect of steady drag on flutter oi nonlifting wings using

incompressible strip—theory is studied and shown to correlate with

previously known results. Next, the influence of steady lifting

deformations on flutter is investigated , and flutter modes are found

that involve fore—and—aft bending motions. The significance of unsteady

leading edge suction forces , which are predicted by the two—dimensional

incompressible aerodynamic theory , is then examined . Two idealized

examples based upon existing sailplanes are analyzed .

Steady drag loads lower the flutter speed for larger aspect ratios

but increase it for aspect ratios less than a certain value. Divergence

speed is more sensitive to steady drag, and for very high aspect ratio

wings it can fall below the bending—torsion flutter speed . Steady

deformations due to lift always decrease the flutter speed by an amount

dependent upon the aspect ratio and the fore—and—aft bending stiffness.

Leading—edge suction forces increase flutter speed .

Three—dimensional steady and unsteady airloads are introduced into

the V—g flutter analysis scheme, and for a Mach number of zero the role

of steady lifting deformations and unsteady leading—edge suction forces

is more accurately determined. The behavior predicted using strip

theory loads is again observed , and the suction forces are confirmed to

contribute a significant stabilizing effect. Further calculations using

high subsonic Mach numbers reveal only mild effects due to compressi-

bility (disregarding unsteady chordwise loads of viscous origin).
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modal integral defined in (4—8)

S E mass centroid offset parameterbm

Sy stress torque defined in (3—li )

s = 0 + iw Laplace transform variable

= Reduced Laplace trans form variable

S mass center offset defined in (3—14)

T spanw~se tension

T kinetic energy

t t ime

IJ = dimensionless fli gh t speed

U e s t i m a t e d  speed f o r  c a l c u l a t i o n  of s teady
d e f o r m a t i o n s

U p o t e n t i a l  energy

u ,u ,u displacements shown in Fig. 3—1x y z

V f l i g h t speed

V stress r e s u l t a n t  de f ined  in ( 1—B )

v = u displacement in x—direction , positive
downst ream

(‘3 virtual work of applied loads

w u displacement in z—di rec t i on , positive upwards

x chordwise spa t i a l  coordinate

= -
~~ d imension l e ss chordwi se coord ina tey

modal integral defined in (5—19)

y spanwise s p a t i a l  coo rd inat e

= dimensionless  spanwise coordinate

Z E (1+lg) 17 2 d imensionless  complex f r equency

z vertical spatial coordinate
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z ( x ,y , t )  displacemen t of wing p lanform normal to
x—y plane

ci. angle of a t t ack  of wing root , positive nose up

8 quantity defined in (3—38)

y distributed vorticity on airfoil chord

flutter phase angle by which bending
displacement leads torsion at wingt ip

delta function

C ,C , C eng ineer ing s t ra insyy y~ yn

damp ing ra t io

p a i r fo i l  maj or pr incipal  axis coordinate

airfoil minor principal axis coordinate

p atmospheric dens ity

densi ty  of wing s t ruc ture

o real part  of s

O ,O ,O stressesyy y
~ 

yrl
El

= -j
~
j-
~ 

bending st i f f ness ra t io

torsional displacement , positive leading
edge up

E w9 ,/ ~~-j — dimensionless frequency
d

frequency

w ,Wc~ modal natural frequencies (Appendix A)
i - I

aspect ratio

xix
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SUPERSCRIPTS

spa nwise spa t ia l  d i f f e r en t i a t i o n

time differentiation

— Laplace transformation

simple harmonic t ime dependence

SUBSCRIPTS

I) divergence

F flutter

O steady

1 uns tead y

ABBREV IAT IONS

Cj j ’ th chordwise bending normal mode of
free v ib ra t ion

Tj i ’th tors ional normal mode of free vibra t ion

Vj j ’ th ve r t i ca l  bending normal mode of free
vibra t ion

VT vertical bending/torsion

VCT ve r t i ca l  bending/chordwise  bend ing/ to r s ion

xx 
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Chapter I

INTRODUCTION

Aerodynamic loads and deformat ions  paral lel  to the chord are

usually neglected during stud ies of aeroelastic stability of lifting

surfaces .  Furthermore , dynamic s t ab i l i t y  is usually anal yzed wi thout

regard for  the inf luence of steady de fo rmat ions  due to stead y—state

lif t.

Very little literature exists which treats chordwise forces and

bend ing in an aeroelas tic anal ysis. A substantial study of the effects

of drag loads on divergence of a cantilever wing is made by Petre (Re f .

2, pp. 449—487). Here it is clearly demons tra ted tha t the in terac tion

of drag with  bending deformat ions  due to l i f t i n g  loads can signifi-

cantly reduce divergence speeds. Goetz (Ref. 17) considered this same

drag—bend ing de fo rmat ion  divergence mechanism , specialized to the case

of a rigid l i f t i n g  surface  at the end of a beam—rod. This work involved

supersonic f low past a su r face  having a blunt  leading edge , and the 4

resu l t ing  sizeable drag forces  caused a significant reduction of the

—-lassical  divergence speed .

One example of an aeroelast ic  s tudy in which chordwise deformations

of a straight canti lever wing are accounted for  is the work in the area

of t i l t i n g  proprotor  a i rcraf t  by Wayne Johnson . The cruising f l ight

condition (Ref .  27) is modeled using a proprotor  with axial flow mounted

at the tip of a cantilever wing . The additional degrees of freedom

associated wi th  the individual elastic rotor blades and the aerod ynamic

and iner t ia l  e f f e c t s  of the proprotor  result  in a much more complex and

specialized aeroelastic analysis than is considered here. ‘ 1

1
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The e f f e c t  which steady cho rdwise forces can have upon dynamic

stability was explored by Petre (Ref. 3) and Petre and Ashley (Ref. 1)

us ing  two—d imensional incompressible unsteady l i f t i n g  a i r loads .  The

latter work presents extensive calculations regarding the effect of

steady drag on bending—torsion flutter of a uniform cantilever wing .

It serves as the starting point for the work pursued in this thesis.

The objec tives of this thesis are as follows :

1. To check and interpret the predicted effect of steady drag

on the flutter behavior of a nonlifting wing discovered in

Ref. 1, using a modal approach instead of a collocation

approach.

2. To generalize the equations of motion to inc lude c o n s i s t e n t ly

fore—and—aft bending motions , adequately accounting for the

elastic coupling among the three degrees of freedom .

3. ro include steady—state lifting deformations in the dynamic

stabilit y analysis by considering small time—dependent per— —

turbation deflections about a steady displacement solution .

4. To allow for unsteady leading—edge—suction forces in the

chordwlse direction predicted by two—dimensional incompressible

unsteady potential flow theory .

5. To improve the representation of both steady and unsteady air—

loads by use of a three—dimensional subsonic kernel function

program , from wh ich leading—edge suction and induced drag can

also he obtained.

Items 2, 3, and 4 are interrelated and together renresent a consis-

tent extension over previous research in the modeling of the physical

2
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system. For example , when steady lateral bending deformations ;~re

present, unsteady chordwise loads can induce twisting motions which

significantl y affect dynamic stabilit y . The main purpose ~iere will

he to establish trends and gain fundamental insight into the influence

of chordwise forces and steady deformations , hopefully shedding light

on their importance in practical .ierospace problems .

Certain assumptions are adhered to throughout this thesis . Since

the emphasis is upon working from the equations of motion in differen—

tial form in order to include certain nonlinear elastic coupling terms , —

it is convenient to restrict this stud y to straight cantilever wings

having mass and stiffness properties uniform with span. The wing is

taken to  be a one—dimensional structure in the sense that all deforma—

tions are described as functions of the spanwise variable v . Camber

bending is neglected and the simple Euler—Bernoulli beam stress—strain

assumptions are used . The platform is rectangular , and the steady and

unsteady flow fields are always assumed to be superposable; unsteady

loads are computed for the undeformed geometry and applied to the deformed

wing. Although these assumptions would be restrictive for the purpose

of modeling actual  s t r uc tu res , they are accep tab le  here since only the

relative influences of chordwise loads and steady deformations arc of

interest.

In Chapter II a vertical—bending/torsion model basic to the system

of Ref. 1 is developed and modal equations are derived to permit flutter

calculations for zero steady lift with steady drag included. Assumed

mode solutions are then compared with results of Ref. 1. A linear

steady—state version of the modal equations i s then examined to a l low

computation of divergence speeds as affected by steady drag.

3
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-



-- 5-~__-55555 5- - 5~~-5 5555-5-S 5-

In Chapter I I I  a model central  to this thesis is developed that

includes ve r t i c a l  bending, cho rdwise bending, and torsion.  Nonlinear

steady and linearized unsteady differential equations are then deduced ,

and they a re ana ly t i ca l l y  compared with  the model in Chapter II.

In Chapter IV the modal forms of these steady and linearized

unsteady equations are set up to include lif tin g airloads deduced from

incompressible steady and unsteady strip—theory. A scheme based on the

so—called V—g method of flutter analysis is used to determine neutral

dynamic stability conditions , and results are checked against those of

Chapter II.

In Chapter V a generalization to the case of arbitrary motion in

t ime is presented through Laplace transformation of the modal equations ,

which requires incompressible unsteady two—dimensional airloads valid

for non—periodic motions of the wing.

A determinant iteration procedure is used to determine the aero—

elastic eigenvalues for flight speeds above and below the flutter speed.

Finally , the effect of unsteady leading-edge suction forces predicted

by incompressible strip theory is included in the linearized unsteady

stability system.

In Chapter VI all results for incompressible strip—theory airloads

are assembled and systematically presented , concluding with two examples

based upon actual sailpianes.

In Chapter VII the flutter speed prediction scheme of Chapter IV

is modified to use three—dimensional subsonic steady and unsteady

lifting airloads. Results are presented to indicate the effects of

three—dimensional aerodynamics , unsteady drag, and compressibility. 
—

4 
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In Chapter VII I the princi pal conclusions of this thesis are

presented. -

5
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Ch.i pt  or I i

DRAC EFFECTS ON F1.ITTTER ANI) 1) 1 V ERt ;ENCE
E)EFORMAT ION I N V ERTTCAI , ItEND INi.; AND TORS ION ONLY

A. The V e r t i c a l  lk ’i id in g/ T or s  ion I ia t  ens

I.n the l’etro and Ashley work (Ref. 1) t h e  o t t  oc t  ot dr a g  eli t l i l t  t e l

of c a n t  11 ever w tugs is s uti i t’d asswn I ug en I y ye rt I i -a I bond Ing and

t o r s i o n  about  the el ast I t~ a x i s .  The eq t i a t  Ions arc cast Into Integr al

f orm , and so I ut Ions art’ obt ~ I ned by t e l  1 e - ~,t  Ion  of (ito I nt ogr:l I e qu a t I o n s

at t e n  stat Ions  a cros s  ( h o  span. Here we check t lie Ft•~u i I t s  o l  i~et  .

us ing  an en t I re lv d I Ito ron t , moda I a p p r o a c h .  The resii it a I so so rye :io

eX.lflil) I co with whit -li to co m pa i- c sol u t  I ens t ot ind w i t  Ii t he nero gene i i

svs  on, , developed in t he t e l lowing cli -i p t I F , whi I cli In c  I tides clior dw I

b e n d i n g .

The d Iort’n t ia I equa t Ions ol  b e n d I n g  and t o r s i o n  • ct g i v e n  I n

R ot  . 1 and a d ap t  ( ‘ I I t o  t h e  p r e sen t  n o t a t  i t i t i  ant i  ceord Iii;it 0 s\t4tolfl ( i s

In FIg. ~-l) , are
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The q u a n t i t y  M is a func t ion  of y given by

( 2 — 2 )  M — — D ( r t ) ( r i— y)d ~

— — D

where it is assumed that  the running drag force D has constant magni-

tude ac ross the span. M
~ can be recognized as the tota l  momen t abou t

the ve r t i c a l  axis applied at s ta t ion y by a l l  drag acting outboard

of this  s ta t ion . Mean values of the twist and bending displacement

a re assumed to be zero.

Equa t io ns ( 2 — i )  are l inear  and are coupled inert ia l ly  by the thi rd

term in each; these terms arise from the o f f se t  of the center of mass

of  the a i r f o i l  section from the elastic axis . A second coupling e f f ect

is due en t i rely to d rag , introduced through the terms containing M

AI. I remaining terms in the equat ions  represent the conventional elastic ,

iner t i a l , and unsteady lifting aerodynamic load contributions .

The manne r in which the drag loads have been introduced into the

system is discussed by Petre (pp. 449—487, Ref. 2) and can be explained

by the following physically oriented argument. The drag coupling term

in the bending equation arises from the resultant bending moment m (y)

applied at station y due to drag forces out boa rd of y . As shown in

Fig. 2—1 , a drag force a c t i n g  outboard of s t a t i o n  y has a componen t

0i~ ( y)  p e r p e n d i c u l a r  to the a i r f o i l ’ s princi pal ax is o f ve r t i ca l  bend i n g ,

giving a resu l t an t  moment at y about the principal  direct ion of

9-.m (y)  — 4 (y ) D f  (r~-y)d~

— 4 i (y) D ~ (t— y) 2

-

8
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The moment—curvature relation for the beam ,

2 x

x

together with moment—shear equilibrium

~
q(y)

(here q ( y )  is the pos i t ive—upward  runn ing  load in the p r i n c i pal

direc t ion of the sec t ion) al lows the d rag e f f ec t to be expressed in

e q u i l i b r i u m  w i t h  the e l a s t i c  term as

~ 2 r a 2 wl ~ 2 r 1
~~ L~x 

~~ 
+ -

~~
—.

~~
- [M~~ j  

= °

This is the same drag coup l ing  term appear ing  in ( 2 — 1 ) .

A si m i lar deriva tion reveals the o r ig in  of the drag term in the

torsion equation. Looking at the front view of the wing (FIg. 2.2) one

can see that a drag load at ri gives rise to a twisting moment a t  ~‘

by acting through the  moment arm given by d i s t a n c e  e

e = w(~ ) — [w(Y) +.~~~ (v)(ri—v)]

The resultant torque applied at sta t ion y by a l l  drag forces ac t ing

outboard is given by

T(y) — D [w(n) — w ( y )  — -~~~~~ ~~~~~~ (n—y)ldn

Differentiating with respect to v

9
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d’I~y(y) - D ~~[— ~~w~y) (n-y) — -.
~~

- +.
~

] dr~

— — II ½( 9 - . ) 2

2d W

Elast ic equi l ibr ium for  a rod loaded with applied torsion Ty(y)  is

given by

~ r~ ~i — ~Ty(y) 
=

~y L  d ayj  ay

The drag coupling term of equation (2—1) can then be identified in

the result

~ r ~ i a2w

B. Solution By Assumed Modes

When structural dynamics problems yield solutions whose frequencies

are within the range of the structure ’s lowest normal mode natural

frequencies and the latter have a sufficiently sparse distribution ,

modal analysis methods prove to be effective. Primary bending—torsion

flutter of cantilever wings, under study here, is a classic example in

aeroelasticity of such a system. Inclusion of steady drag effects

should have only a small effect on the range of frequencies over which

flutter solutions occur and , by this reasoning, should not adversely

affect the convergence of modal solutions. Petre in Ref. 1 expresses

10 
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the opi nion that methods relying on the assumption of a few prescribed

deformation modes constrain the flutter mode shape and should be avoided .

This opinion is test~d herein by actually study ing modal convergence.

Solutions of (2—1) are sought using superposition of the dynami-

cally uncoupled natural modes of free vibration in bending and torsion

of a uniform cantilever beam . These assumed modes , with their relevant

properties , are described in Appendix A. Although not true normal modes

of the inertially—coupled structure , they can be considered as “pseudo—

orthogonal” since in tegrals of the type

f 1m f  f d~~~= O  i,
~~I0 W

1 
W
j 

-

I.ç3 J f  f d y O  i’~~li -i

lead to uncoupled e l a s t i c  behavior  and hence a diagonal s t i f f n e s s  mat r ix

in the m a t r i x  ei genvalue problem . Use of the actual normal modes would

require that they be calculated for each wing configuration studied .

Since the assumed modes sa t isf y the natural boundary conditions at the

f ree  end of the  c a n t i l e v e r  as well  as the geometric  boundary condi t ions

at its clamped root , Calerkin ’s method can be applied to the differential

equations (Ref. 4, p. 218) to obtain the system in terms of modal

gene ral ized coord inates.

To find the velocity for neutral stability (the flutter velocity),

the V—g method (p. 381, Ref. 5), common in aeroelastic stability

analyses, in employed. With simple harmonic motion of frequency w

the unsteady , incompressible , strip—theory lifting airloads are

expressible as ((4—123) and (4—124) of Ref. 5]

1~1

- -~~~~~
-
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(2— 3a ) L ( w , c~;t )  = — II p b 3 w2 (— L + [L~ _(½+a ) Lw ] (t)}e iwt

(2—3b) m(w ,4;t) = TI p b~ w2 (_ [M
~ — ( ‘~+a) L ] ~

+ [M~ . (½+a) (L~, + + (½+a ) 2 L Jqt Ie i(hi t

whe re

L = l - 4 ~~C( k )

(2—4)

L,~ = — -
~~ E l + 2C(k)] — C(k)  M,~ = -

Here C(k) is the familiar Theodorsen function of reduced frequency

wbk

The drag coupling terms in (2—1) can be treated as applied loads

in developing the modal equa t ions , by defining total applied force and

momen t in the bending and torsion equations as

(2—5a) F (y,t) = L(w ,~~,t) — 

~—r (Mq )

(2—Sb) m (y,t) = m(w ,4,t) — M

Incorporation of artificial structural damping g by allowing a complex

elastic modulus produces the system

(2—6a) EI (1+ig) + m — 5e = F (y,t)

(2-t - ) CI
a
(l+ig) 

~~~~ 
— 

~~~~ 
+ 8e = — my (y , t)

12 
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Formal development of the modal equat ions begins w i t h  s u b s t i t u t i o n

of the series expansions for w and ~ in terms of the assumed mode

shape funct ions  and general ized coordinates .  With the same number n

of bending and torsion modes a lways  used , the sy stem order w i l l  he 2 n

Generalized displacemen ts are assumed to  have s imple  harmonic  t ime

dependence , giving 
- 

-

( 2 — 7 a )  w ( y , t )  = 

1=1 ~w 1~~~ 
q e~~~

t

(2-7b ) ~ (y , t)  = 

i=l  
f~~~(y)  q~ e1Wt

Generalized displacements for bending modes have u n i t s  of length , where

as fo r torsion they are dimensionless.

Galerkin ’s method involves s u b s t i t u t i o n  of ( 2 — 7 )  i n t o  the  sy s tem

represented by ( 2 — 1 ) ,  ( 2 — 2 ) ,  (2—3) , and ( 2 — 4 )  and then m u l t i p l i c a t i o n

of each term in the  bending equat ion  by f~~ and each in the  tors ion

equat ion by f~~1 
, fol lowed by i n t eg ra t ion  across the ha l f  span. Wi th

e~~~
t cancelled the r e s u l t i n g  system is

(2-8a) EI (l+ig) ~~~~ 

i~~l 
i’’’’ f q dy - fl~k)

2 f 9- dv

+ W2 8
e 

~~~~ ~~ c~ 
q~ dy = 

~~~ 
F ( ~~,w ; t ) f  dy

(1 < j < n)

( 2—8b ) CI (l+ig) I E f ’ ’  f q~ dy + 3t~2 f E f~ f~ q~, dvd ° 1—1 ~~~~ ~ ~i ° 1=1 4 i ~ 
v i

— ~ 2 

~~ i~~i ~w1 
~t~

1 

dv = — .j
~~ J~ my (~t~ w ; t ) f q, dy

13
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The general i zed fo r ces can be arr anged in terms of dimensionless unit

generalized fo rces Q~1 th rough the fol lowing d e f i n i t ions :

( 2-9a) f~ F ( q ,w ; t ) f d~ = llPW 2 b 3 t [~~ Q~ I + 

~~~ 
~~~~~~~~ ei

~
t

(2-9b) ~~~~~~~~~~~~~~~ = llPw2b + E Q
j~~~~j~~~~~~

] 

e
lWt

The modal integral in the first term of (2—8a), in tegrated by par ts

twice and with application of cantilever boundary conditions , yields

- 
1L 

~~~~ f dy = f ~ f ’ ’  f ’ ’  dv0 w
1 

W 0 W~ W -

O f o r i~~~ j

From Appe n di x A , the i= j  te rm can be expressed in terms of the na tura l

f requency of the th assumed bending mode by the subs t i tu t ion

(2—10) El !9- (f ~~ )2dy = mui2 .C ’ f 2 dy = mw 2 9-.

Similarly , integrating the first term In (2—81,) by parts and introducing

the na tura l  frequency of the j t h  assumed torsion mode leads to

(2-il) Gid ~~ f~ ’ f~~~dy = (I ~ j )

1— ~ Q (i = j )

Insertion of ( 2 — 9 ) ,  (2—10) ,  and (2— i l )  into (2—8) and fu r ther  use

of modal or thogonality  properties gives

14
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W~~~ q~ q

(2— 12a) -
~i~~z- (l +ig) —

~~~
- ~~~~~~~ — yf-9;7 —1;! + 

~~~~~ 1=1 ~~~ 
q ,~)

+ 

~ 

+ 

~~~ ~~~~~~~ 
q~ = 0

(1 < 1  < i n )

i ~~2
m .1 d ~ m J

(2—l2b) .
~ ~~~~ ~~~ ~~~ 

— .~ ~~~~~~~ ~p

s n w n w fl

+ bin 11~~~ i=l 
1
ij b 

+ 

~~~ ~~~~~~ h + 

~~~ ~~
+n ,i+n q~ = 0

where the bending equation has been divided through by flpw2b 3 Q and

the to rsion equation by Hpw2b ” .Q . I n e r t i a l  coupl ing , a consequence

of nonor thogonal itv  between bending and tors ion assumed modes , produces

terms in the modal Integrals

(2—13)  I~~. 
~~~~ 

~~~~~~~~~~~~~~

For now I t  is convenient to re ference ~ to the firs t assumed

torsion mode na tural  f requency W~f~ . Assumed mode na tu ral freq uenci es

(Appendix A) are

.1 fl 2~~~~~.j

2 T7 j
(2— 14)

t. RI
2 411 x

w = N  —u- --—-
m

Ratios that  are use fu l  are th en

15
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(2—15)

= (2j - l )~

The t ranscenden tal are given in Appendix A fo r 1 < j < 5 -

The equations can be nondimenslonalized through the following

dimensionless parameters , chosen to be as consistent as possible with

Ref. 1 notation.

5
- m — e_

llpbz

(2—16)
El b 2

~~~~
GI d~

V

Frequency is nondimensionalized as in Ref .  1 by defining the frequency

parame ter

(2—17) Z E (l+ig)f22 (l+ig)
3z-
~
-4z~

4 ~l= -~~-~~ --
~~

— (l+ig)

Subs t i tu t ion of (2— 15) ,  (2— 16) ,  and (2—17) into (2— 12) yields the modal

equations in a suitable form for computation.

n
(2— l 8a)  {M — N~II”MPI z}-—~- + E Q 

~ 
—i

-~ 1~~~~ i,

n
+ Z {MsI + Q 1~~ }q 0

(1 < j  < n ) 1=1 ~~~‘

- 

~~~~~~~~~~~~~~ - -~~~~~ 1TT~~
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~~~~~~~~~~~~~~~~~~~~~~~~~~~p.-

n
(2— 18b) E ~

— MSI 1 + Q ~~ ~
} —

~~
-
~~ + f ’~ M j  [1 — ll2 (1— ’~)

2Z ] }q
1=1

+ 

~ 
~~~~~~ q~ = 0

The f l u t t e r determinant , of order 2n , resul ts  as a necessary cond i t ion

fo r a nont r iv ia l  solution and leads to a comp lex eige nvalue problem to

dete rmine Z

Next , the un i t  generalized forces must be expressed to allow

numerical computation. Combining (2—3) , (2—4), and (2—7) into (2—9)

leads to

n
(2—l9a) — Ilpb 3w 2 {~~J L E (v)f (v) —j-

~
- dy + ~~ (L~ — (‘-+a)L ]

i=l I

- 
~~f~~~(y ) f ~~~(y ) q~~ dy} + 

~~ ~~2 

~~

(1 < i < n )  q— - - — 

f (v)dy H~~
2b 3

~~[ E  Q 1, 1 ~~~ + ~~1
Q

•1, 1+~ q~~1

(2—19b) flpb~w
2( f ~ [— N + (‘~+a)L ] ~ ~w ~~~~~ (v) —j -

~ 
dy

i=l i j

+ ~~~~~~ - (½ + a) (L ~+ M )  + (‘ ;+a) 2 L ] E f ~~ ( v ) f ~~ (v)q~~ dy}

+ f 1 :pV 2b 2(Z_y)2CD ~ 
f” (y)f (y)—

~~ dy
1=1 i ~-1

n n
= IIP 2b”

~~
[
~~~

Qj.4m I 
~~~~~~ + 

~~~~~~~~~~~~~~~~~~~~~

A f t e r  fu r the r  reduct ion , with

2 w’b 2
V 

~~~~~
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and carrying out remaining d i f f e ren t i a t ions  in y , (2—19) becomes:

n n
(2—2 0a ) E ~L f 1f (j )f  (~ )d~ } ~~~~~~~ ~ t [ — L  + (k+a)L ] .

w 0 W
i 

w
1 

w

+ ~~~ 

~~~~~~~~~~~~~~~~ 

- 
~~ f 1(~~~ ) .

( 1 < j < n)

f~, (~ )f (~ )d~ + ~~~(~~
_~~)

2 fIl (~ )f  (~ )d~ J ) q
i I I ~i 

4

n
= 

i~ l 
~~~~ 

+ 
i=l ~~-~ , i+1-L q~

n 
1(2—2 0b)  

~ ~-M~ + (½+a)L ]f f (~~) f 1~ (~~)d ’~i=l ~I ~~

+ 
211k2 f

l(1 ~)2fU (~ ) f  ( ‘.)d ’.’.} i + 
j~ 1

M
~
_ + M

w
)

+ (½+a ) 2L I

n n
= 

i l  ~j+n,i ~~~ 
+ 

~~~ ~j +n ,i+n q~

Here , integrals in the spanwise variable y have been non—

dimensionalized . Four different types of modal in tegrals are encountered ,

including the previously identified . The three new forms arise

from the drag coupling terms and are

=

(2— 21) —

— 
~~~~~~~~~~~~~~~~~~~~
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The modal Integrals in (2—13)  and (2 — 21)  were numerical ly computed to

twelve significant digits for 1 < I , -~ < 5

Two addi t ional dimensionless par ame ters can be in trod uced , again

drawn from Ref .  1.

C
(2—22) A =  ~~+ 2  C = - ~~

The drag parameter C is defined as the app lied steady sectional drag

coefficient divided by the sectional lift curve slope (211 for

incompres ible strip theory).

Af ter (2—20), (2—21), and ( 2 — 2 2 )  are combined w i t h  o r thogona l

modal integrals recognized , the uni t genera l i zed  forces  are f ound to h e

Q1 1  
= J L  ( i=j )

1.0 ( i# j )
— 

Q1 1~~ 
= - ft - AL~J]I1J +~~~~ ~~~ II ~ +

(2—23) h

Q~÷~~1 
= - [M~ - AL IT .. + ~~ T~~~

)

~j+n,i~~ 
= — A(L~ + M

~
) + A2L

wI (i=i)

10 (i~ j )

The Q
11 

depend only upon k, A , and C . Actual computation of the

Theodorsen function is accomp lished by direc t use of the ascending

power ser ies of the modified Bessel functions K and K
1 , as exp lained

in Appendix B.

Equations (2—4), (2—18), and (2—23) together supply the flutter

determinant for the VT system using assumed modes , given in matrix

19
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fo rm in ( 2 — 2 4 ) .  Solutions can be found using from one to five assumed

modes in each of bending and tors ion , and the maximum order of the

determinant will be 10.

M E l  — (N
i

fl) 4 PiaZ ]  + 
~ o~ 

_MSI
11+Q

1~~ ÷1 
— - —  MSI

1~

1.. ...~ M[l —(N IT) 4 Pi ZI + Q — M SI +Q — — —  —MST
n a n,n ni n ,n+l nfl

+ 0
(2 24 ) 

‘.n ,2n 
0

-MS111 + ~n+l,1 
_Msl~ 1 + ~~~~~~ 

½Mi
a
[l_ 

4
Z) + 

~n+l,n+l 
‘c0 r

_MSJ
1~ 

+ 
~~~~~ 

_MSl~~ + 
~2n ,n L. .

~~ 
½Mia [1 - (~

+ °2n ,2n

In seeking solutions , val ues for M , P. 
~a’ 

A , and S mus t f i r s t

be chosen to specify the wing configuration . Then, for any desired

value of C and an estima te of red uced freq uency k , complex eigen—

val ues Z can be found from ( 2 — 2 4 )  via linear matr ix  eigenvalue techniques.

A computer program is used to solve for flutter conditions as

follows . With a f i r s t  est imate of k chosen large enough so that the

structural damping,

Im( Z)
(2—25) g = R e ( Z )

is negative fo r all 2n eigenval ues , successively smaller values of k

are assigned and eigenvalues computed until a positive g is obtained

for the eigenvalue corresponding to the aeroelastic mode which encounters

flutter. Then a zero—finding subroutine locates k for which g=0

for the flutter mode . Dimensionless speed and frequency, defined by

20
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( 2—26 )
E

can east ly he compu ted for tlit ’ ft Ut t or o I genva 1 (10 by

JR o ( Z )

(2 - 2 7 )

The t tut ter mode shape is at so found , s inc t ’  it is re lated to t h e  e t  )~e f l—

vector o I the e igenvalue yielding the I iut to r c o n d i t i o n .

C. Cq~ par i son of ~to4~!_l wi  th C o I l  (~ (‘~ I t~i0 i i ~ RI ’S ( l i t

A rathe r thorough s t u d y  was c a r r i e d  out  in R e f .  1 . c o ver i ng  a w ide

range of pract li-al comlll nat ions of th e d Em ens  ion less p;ir :tme t ers . ‘ilie

present  oh oct  lye i s  not  to reca 1 cti I a t e  a t  1 of t he saint’ dat  a h u t  ra th  or

to eva I ~ia to  the  of f ee t  I V4 ’l10SS of  th ~‘ ass t iinod rn o&lt ’ ~IIW r( ( c l i .  Conseq (It ’ll  L i v

(2—24) has boon solved at cond it Ions pa ra I le I to ones for wh I cli resul t s

are pub I I stied In Ref. I t o 01 fe r di roe t (-ompa r I son. Al so ( 2 — 2 4  I s tised

to verify the p er f o r m an ce  of the VCT sVst 01(1 doVe spot1 i i i  t lie

next chapter.

A coinpa r I son of assumed mode e C U I at I on s  wit 1 Ref.  I ros til t ~ I

p resented In  Table 2.  1 f o r  t h r ee  different coti I I gura t t o ns .  ~ f t h ose ,

cases (a) and (c) r e p re s e n t  a stubby l o w — a s p e c t — r a t i o  w i n g  ( w i t  Ii 1’ .4 )

whereas case (b) Is the oppos i t  e e x t  rome o I l arg e  asp ect  rat to. A

t ypica l  r a t i o  1.6 , tel - ex a m p l e , would l i x  the asp e c t  r a t i o  of
Hi
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1.- — - - -~~~-~~~~~-- 



F,— - - _ —‘---=- 5-—-

~~~ 

-- _a,n ~~w-.w..., -- _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ‘-5 - - - _____ —

cases (a) and (c) at 2 and of case (b) at 20 - The mass ratio para—

mete r of cases (a) , (b) is in the regime encountered by sa i lpianes

whereas in (c) it is representative of conventional a i r c r a f t .  F i n a l l y ,

t he steady drag parameter is zero in the f i r s t  two cases but has the

extremely large value C = 0.04 in (c) -

In all cases n=3 already yields adequate modal conve rgence.

Fo r the large aspect ratio case the use of one assumed mode ( n — i )

gives a significant error, yet n=2 produces good accuracy. This

suggests that the second bending mode is an important factor in flutter

of high—aspect—ratio wings , a phenomenon discussed in Chapter 6.

Additional comparisons between flutter speeds and frequencies

found by the two methods are offered in Table 2.2, emphasizing their

relative accuracy as steady drag is increased to the very hi gh value

C = 0.04 . Evidently good agreement is maintained in the presenct if

drag.

The mode shape at flutter for two of the preceding cases is

presented in Table 2.3 for wings of small and large aspect ratio , each

with C = 0 .0 4  . Amplitudes of the ten generalized disp lacements are

normalized with respect to 
~~ , and the phase angles are referenced

to the phase of this torsion mode . For P = 0.4 only q
~, 

and
1

have app reciable magnitude , whereas the la rge—aspec t—ra t io  example

disp lays a s igni f ican t contr ibut ion by ~~ as w e l l .
2

These f l u t t e r mode shapes can be compared to the R e f .  1 results ,

w i t h  some ef fo r t , as follows . In Ref .  1, the ta ngent of the  angle by

which the torsional displacement at the wing t ip  leads bending d isp lace-.

ment in the f l u t t e r mode is tabu la ted ; it is converted here to an angle

22
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in degrees. The spanwise shape of the bending por t ion  of the mode at

flutter for  the two Table 2 . 3  cases is i l l u s t r a t e d  in Fig.  5 of Re f .  I .

Since the flutter mode ’s bending displacement obtained in that treatment

was complex , Its ampl i tude  at  each spanwise s t a t i on  was taken , phase

differences being neglected in the figure.

For the present solutions a similar assumption -is made to display

the bending mode shape of the P = 0.004 case in Table 2.3. Contribu-

tions of q and q have been added vectorically at points along
w
2

the span to allow comparison of bending amplitudes with the Ref. I

f i gure. For p = 0.4 , of course , only the first bending mode cont-ributes

sign if ican tly and phase differences are negligible.

The comparison of bending flutter mode shapes appears in Fig. 2—3 ,

where amplitudes are normalized to unit torsional displacement at the

ti p. Phase angles S between bending and torsion at the t i p  are also

compared. At low aspect ratio excellent agreement for phase angles and

mode shapes is observed , wi th mi ld  disagreemen t in the bendin g mode

amplitudes. In the P = 0.004 case , fo r  which  the  Ref. 1 solution was

made using only five spanwise collocation points , a significant disagree-

ment in mode shapes and tip phase angles is observed. lii spite of th is

discrepancy , the respective flutter speeds differ by only 0.8211. For

all large—aspect—ratio cases compared this sort of discrepancy in flutter

mode shapes is observed , where the second bending mode plays a significant

role and causes apprec iab le  phase d i f f e r e n c e s  in bending defleetions

along the span. Mode shapes at flutter are analyzed in more detail

in Chapte r 6.
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D. Divergence Including the Effects of Drag

One further application of the VT linear model is predicting

the effect of drag forces, steady in direction and magnitude and uniform

across the span, on static aeroelastic stability . Removal of all time—

dependent terms in (2—1) and insertion of simple strip—theory steady

incompressible aerodynamic loads gives

2
(2—28a) El — 2HpV 2b~i + 

~~~2’ ( Mq )  = 0

~
2 q~ ~

2 w
(2— 28b ) GI

d ~ + 2rlpV 2 b 2 Aq — ?l
~ ~~~~~~~~~ 

= 0

Subscr ipts  emphasize that  deflect ions are static quantities.

As in the foregoing dynamic analysis, deflections are represented

by assumed modes and a system of 2n modal equations is derived , which

has a nontr iv ia l  solution only if the determinant of the matrix of

coefficients is zero which yields the divergence speed with drag effects

inc luded.  For b r e v i t y ,  since the manipulations involved are quite

strai gh tforward , the final form of the stability determinant is

presented here.

fl~N~ P i M  i~ ~ o
’ — 2(l+c)111 — 2( l+c) 11

[+ cl~~~~4cT~~~J [÷ cI~
)
~4cI~)]

1~ 
— 12( l+C)l — 2(l+C)IP I M  i nl0 a I ——— /

L ~ 11 N 1 1+ cI~
3
~—4cl~

2
~ + cl ’3 ~—4 c7~

2
D ni ni nfl an

(2-29)  - o
7 ( l )  ~ (l)  112 laM 

ç. ..
~ Ci ., —~- —2-- — A

‘‘~~~ ‘ ° ‘
~D 

- 
~~~~~~I I ~~~~~~~~~~~~~~~~~~ 

-.----‘-.-

— ~~~~~ 
I N r1 2 i

a
M

nl nfl I i 2 . ~ ~~~~~ 1~
— - A
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Solution of this determinant  for Its largest  ei genvalue gives the

divergence speed U
D . This is of interest in the ensuing work ,

• particularly for studying dynamic stability of wings having steady—

state lifting deflections in the presence of drag, which can reduce

divergence speed considerably.

For zero steady drag (C=0) the classical divergence speed comes

trivially from (2—29), which degenerates for C = C - The classical

divergence mode shape is just the first assumed torsion half—sine mode ,

and the first torsion modal equation uncouples to give the divergence

speed ,

(2—30) U
D 

= n/ —i-
When A Is decreased to zero this classical divergence speed becomes

infinite; yet when C ~ 0 (2—29) will still yield finite solutions

with  A = 0

A direct comparison of solutions of (2—29) with Ref. 1 results for

the effect of drag on divergence is presented in Table 2.4. Modal

convergence is satisfactory , hut the modal approach appears to differ

more significantl y from the Ref. 1 analysis f or d ivergence cal cu la t ions

than for flutter results.

p
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Case n U F ~F % Difference
____________ ___________ ______________ ______________ 

of UF from n 5

(a)

M = 10.0 1 2 .7 175179 1.3105289 0.239%
P = 0.4 2 2.7239548 1.3114559 0.00239%
i = 0.25 3 2.7240004 1.3114641 0.00072%ci
S = 0.1 4 2.7240178 1.3114673 0.000077%
A = 0.1 5 2.7240199 1.3114675 ——
C = 0.0

(Ref. 1) 2.699 1.309 0.918%

(b)

1 4.2621908 0.842707 4.296%
H = 10.0 2 4.0842768 0.8849367 0.0576%
P = 0.004 3 4.0864182 0.8850560 0.0052%
i = 0 .25  4 4.0866066 0.8850659 0.00059 7%
a
S = 0.1 5 4.0866310 0.8850660 ——
A = 0.1
C = 0.0 (Ref. 1) 4.032 0.886 1.337%

(c)

M =40. 2 4.260823 1.294037 0.00155%
P = 0.4 3 4.260879 1.2940232 0.000235%
i = 0.25 4 4.260882 1.2940250 0.00016%

ci
S = 0.1 5 4.260889 1.2940236 ——
A = 0.1
C = 0.04 ( R e f .  1) 4.199 1.293 1.4525%

TABLE 2.1 Comparison of Assumed Mode and Collacation Methods for
Predicting Flutter Speeds and Frequencies for Three
Configurations
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Case C -_____ ____ — ________ _____ ___

n = 5 Re f .  1 % n = 5 R e f .  1
______ _____ _____ 

Difference 
________ 

Difference

P = 0.4
H = 10.0 0.0 2 .7240  2.699 0.93% 1.3115 1.309 0 .l 9 ’~
i = 0.25 0.02 2.7830 2 . 7 5 3  1.08% 1.307 1 1.305 O . 1 6 ~ci
S = 0.1 0.04 2.8623 2.823 1.37% 1.3024 1.300 0.18’
A = 0.1

P = 0.004
H = 40.0 0.0 7.1778 7.127 0.71% 0.8651 0.875 1.14%
I = 0.24  0 .02 6.8588 6 . 7 9 7  0 .90% 0.9074 0.919 1.2 8 7 -
a

S = 0.1 0.04 6 .7704  6 .715 0 .82% 0 . 9 2 2 3  0.934 I . 2 7 ’~
A = 0. 1 

____ —— _________ _____ ——-5——

TABLE 2.2 Effec t of Drag on Agreement of Modal Analysis with Ref. 1

________ 
P = 0 . 4  p = 0.004

General ized
Disp lacemen t Amp l itude Phase 

-~~ Amp l it u d e  Phase

q 0.71276 219.620 1.4515 195.460
W
i

q 0.00132 21.95° 0.6288 2 17 . 2 4 0

q 0.0000271 150.13° 0.00449 203.35 0
w
3

q 0.00000408 147.280 0.000674 —10.94°
w
4

q 0 .00000213 163 .47°  0.000 189 15 7 .4 1 0
w

q 1.0 0° 1.0 0°

~~ 0.01503 222.02° 0.01454 147 .11 °

q 0.000808 215.78 °  0.01786 210. 19 °

0.000773 221.31° 0.00930 21 0.11 0
‘V
4

0.000186 217.90°  0.00462 2 1 1 . 7 1 °

TABLE 2.3 Flutter Mode Shapes for Low— and High—Aspect—Ra t io Examp les.
(H = 40 , i 0 . 2 5 , A 0.1 , S — 0 .1 , C 0.04~
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C = 0.02 C — 0 . 0 4

% Difference % Difference
n UD From n = 5 U

D 
From n = 5

1 4.58288 2. 044% 3.90105 1.999%

2 4.48660 —0.0999% 3.81863 —0.156%

3 4.49174 0.0144% 3.82465 0.0017%

4 4 .49 067 —0.0094% 3.82403 — 0.01447.

5 4.49109 —— 2.~i2458 ——

(Ref. 1) 4.66 3.63% 3.96 3.42%

TABLE 2.4 Comparison of Ref. 1 Results With (2—29) Solutions for
Divergence Speeds in the Presence of Drag. (P = 0.004,
H = 40 . ,  1~ = 0.25 , A = 0.1). (For C = 0 , UD = 11.1072)

28
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A La

=0 SECTION A-A

FIGURE 2—1 Physical Origin of Drag Coupling in Eq. (2—la)

t

dw
y 

—
— ei~

FIGURE 2—2 Physical Origin of Drag Coupling In Eq. (2—lb)
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Chap ter III

DEVELOPMENT OF A GENERAL SYSTEM OF EQUATIONS FOR
VERTICAL BENDING/CHORDWISE BENDING/TORSION (VCT)

A. Introduction

Chapter It includes drag loads in transverse bending and torsion

but allows no chordwise deflections. In other words , it assumes

i n f i n i tely large bendi ng rigidity in the fore—and—aft direction. In

this chap ter we con sid er chordwise bend ing , which is a more comple te

model of the t rue  physical  s i t ua t i on .

A review of the literature for work concerning VCT motion of

slender cantilever beams led to the field of hingeless helicopter rotor

stability analysis. The structural modeling of a hingeless rotor is

essentially the same as desired here , except that the wing has no rota—

tional velocity . Accordingly, if an adeq uate model for a hin gel ess

rotor can be found , it can be adap ted for the cant ilever wing by removing

the i n e r t i a l  and c e n t r i f u g a l  tension e f f e c t s  a r i s i n g  from ro ta t ion .

Much of the work pursued in the hingeless rotor field includes

simplifications which either eliminate or restrict one of the three

types of deformation , of ten torsion , in an e f f or t to reduce comp lexity .

This leaves a rela t ively small body of work that  trea ts the f u l l  elas t ic

problem. A well—known system of linear partial differential equations

for coupled elas tic tors ion and bending of twis ted nonuniform ro tor

blades Is that developed by Houbolt and Brooks (Ref. 6); the initial

effort to develop a VCT system for the cantilever wing centered on

adapting this formulation . In the course of this work , however , the

elas tic coup l ing terms were f ound to be i n s u f f i c i e n t to ac coun t for  the

31 -

— - - - 5  

- 
- -U. -



--

drag loads in t ransverse bending and torsion embodied by the terms

con ta in ing M
~ 

in (2—1). It then became apparent that this drag

coupling is actually a nonlinear structural bending—torsion effect and

that the new system of equations to be developed should , of necessity, —

retain all nonlinear elastic coupling terms having the same order of

impo rtance as these drag coupling terms .

Fur ther  search led to the system of nonlinear equations for twisted

nonuniform rotor blades derived by Hodges and Dowell (Ref. 7). This

work Involves development of a more complete strain—displacement rela-

tion than that of Ref. 6, which is necessary to obtain the elastic

bending—torsion coupling terms that produce the desired drag coupling

effect. The equations in Ref. 7 are valid for straight, slender,

homogeneo us, isotropic beams undergoing moderate disp lacements , accurate

to second order in the sense of a res t r ic t ion  tha t  sq uares of bending

slopes , twist , and airfoil chord and thickness divided by wing semispan

are small with respect to unity.

Al though the final form of the equations presented in Ref. 7 might

appear to be immediately adaptable to the present case by setting the

rotor rotation frequency to zero and removing the effects of pretwist ,

this is not entire ly true . One important assumption by Hodges and Dowell

required that the ratio between the transverse and chordwlse beam bending

s t i f f n e s s e s  be a q u a n t i t y  of order  one. Whereas this  is a standard

feature of helicopter blade construction , it usually does not hold for

conventional aircraft wings of any aspect ratio. As a result , the Ref. 7 -:

de rivation has been carefu l ly  retraced for the specific case of a non—

rota t ing  cantilever wing having arbi t rary bending s t i f fness  ratio.  The

developme nt is out l ined in the fol lowing section .
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B. Development of the Nonlinear Equations of Motion

Derivation of the VCT model for the uniform cantilever wing is

presented here in abbreviated form. Important modifications of the

Ref .  7 derivation are emphasized , but duplicate manipulations are only

briefly described. The notation and coordinate system for  the  canti-

lever wing is used exclusively.

The basic ordering scheme presented in equation (4) of Ref. 7 is

retained. One exception is that spanwise warping of the cross sec tion

due to t w i s t i n g, rep resented by a warp disp lacement funct ion  which is

a solution of the Laplace equation over the cross section , is en tirely

neglected here. This assumption is made on the premise that a typical

aircraft wing airfoil section would have a sufficiently small thickness

that warping effects would be negligible within the second—order frame—

work. The ordering scheme is applied to the energy expressions encoun-

tered in the variational derivation of the equations , to determine which

terms should be re ta ined and which discarded.

The nonl inear  stra in d isp lacement relations developed in Ref. 7

have been carefully examined in the context of the present problem , and

they are found to appl y without modifications. These relations are

derived from an exac t transforma t ion be tween the deformed and undeformed

coordinate sytems and originate from the classical def ini t ion of strain

of Novozhilov (Ref. 19) which is based upon increments in the deformed

coordinates. After approximation to second order consistent with all

assumptions, the f i n a l  fo rm in terms of engineering strain and in the

present notat ion is
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, 2 , 2
u + -

~~~~

— + -i-— — u” [lcos~ + flsin~ ]

- u ” [— F s in4  + ricostt,]

(3— 1) S,~ € I~ 
—

These can be recognized as ident ical  to equat ions ( 2 4 ) ,  ( 2 5 ) ,  ( 2 6 ) ,  and

( 2 7 )  of R e f .  7 a f t e r  the warp func t ion  and pretwist  ang le have been

eliminated. The displacements u , u , u of the elastic axis and thex y z

principal coordinates ~ , r
~ of the cross section are illustrated in

Figure 3.1.

Development of the equations using the indirect method of the

calculus of varia t ions is based upon Hamilton ’s principle , wh ich may

be stated in the form

t2(3—2) f  [5 (U-T )  — cSWJdt =
t
i

The equations are obtained by combining expressions for the first

variation of strain energy SLI , kinetic energy 5T , and vir tual  work

of external forces 6(1)

The first variation of strain energy in appropriate form for the

standard Euler—Bernoulli beam unIaxial stress—strain relationship is

(3 3) = 

~~ a~~a ~~~ ~~
yy 

+ 0
y~ 

ôC
y~ 

+ 0
YTi ~~yfl)~~ dn dy

The first variation of the engineering strains , expressed in terms of

disp lacemen ts , is
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~~~~~~
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— 6u ’ + u ’ 6u ’ + u ’ ~Su ’yy y x x

— [lcosi~i + tisin4](6u’,~ — u” 6~ )

(3—4) — [Fsin~r +  ~ cos~~J (iS u” + u” 64~)

T .  
~ ~

~Sc = — ~, 6~~ ’
y n

The s tresses are s i m p ly

= Fr
VV VY

(3—5) 0 - = (;r -

C) + (~~
-5

yn yn

S u b s t i t u t i n g  ( 1 — 1 ) , ( 1 — 4 ) ,  ( 3 — 5 )  I n t o  (1— 1) v i e l t l s

- ,1 ,2

CSII = . if t E [ u ’ + - -
~~

- + - -
~~
- - i t ” ( f c o s~ + tisj ’i~~)

— u ’’ (—cs ini~ + r1cos(f~) 11 ~Su ‘ + t i  ‘ (Su ’ + U
’ 

~ tI ‘
Y X X Z 7.

( 3— h ) — (~ cos4~ + fl’ int~) ( S t I ” — u ” ~Si~)

— (— ~~~s ln4~ + T)coS~~) (~Sti ’ + u” ~~ 1

+ C[rr’ 
~~~

‘ 6~ ’ + ~~~ ~~~
‘ 

~~~~
‘ 1}dn (It . dy

Rearrang ement of (1—6) by group ing of t e rm s has ’ I ng the same vIrtu al

d i sp lacemen ts lo a d s  to
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(V (óu ’ + u 1 6u + u ’ óti ’) + S 6~~’0 y y x x z z y

(3—7) + [—M cos4 + M sinqJ (6u ” — u” 64)

+ [H sin4 + H cos4j (6u” + u” 64)}dy

The stress resultants and moments formed in (3—7), which act on

the deformed wing as illustrated in Fig. 3.2, are defined n-~ fol l ows

v~~~ if G d E ~~j~- area

= EA Iu ’ + -f-— + —F — eA (u cos4 — U” sin~ )}

where A e
A - if I~ d~ dfl

area

and if n d~ d~ = 0 , by definition
area

H ff ~~~G d~~ dnz
area - -

( 3—9) u ’ u ’ 2
= EI (—u ” cos + u” sin ) + EA e

A (u
’ + - - -

~~
---- + —f—)

where I
~ 

if ~ 2 d~ d~area

and if ~~q d ~~ d q = O
area

M E —  if n a d ~~ dn
a rea

(3-10) EI (u” sin~ + u” cos~ )

where I if n 2 d~~ d~
a rea
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Sy if ~~~ ~yn + ~ G~~ )d~ dn
area

(3— 11)

where ‘d if (~~
2 + n

2)d~ d~
are a

At this point In the development the moments of inertia I 
‘

are first introduced. Hereafter , it must be recognized that I may

assume values much larger than I . The terms containing the quantity

eA , which measures the offset of the tensile axis (area centroid) from

the elastic axis, will be dropped. The basis for th i s  s i m p l i f i c a t i o n

is that , in the final modal formulation of the equations , the retention
EA C

A
2

— 
. of eA terms ultimately leads to a dimensionless parameter ,

which appears only as a small quantity added or subtracted wi th  u n i ty .

Since it will not sig n i f i c a n t ly i n f l uence dynamic stabil ity , hereaf ter

eA 
= 0 will be assumed.

After appropriate integrations by parts within equation (3—7), the

final form for the first variation of strain energy , including boundary

terms, is

= JTC)~ 
([~~ V~LI;r + (_M ~cos~ + M

~
sin

~
)”]6u

~

— (V)’6u + [—(V u ’) ’  + (M sin~ +

— + [—(S)’ — u”(—M cos4 + M sin4,) + u”(M sin~ + M cos4~) ] 6 ~~}dy

(3—12)
+ V 6U + U’ V 6U + U ’ V 6u + S

+ [-M c:$ + M
:
51fl

~~
6u
~~~ 

- E M ;cos: : 
~~~~~~~~~~~~~~~~~~~~~

+ [H sinqt + H cosq)6u~~j~ 
— [M sin4~ + M cosq)’6u~~~
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Formulation of the first variation of the kinetic energy is greatly

simplified relative to the Ref. 7 derivation because there are no iner—

tial effects introduced by rotation of the helicopter blade. Since the

procedure is s t r a igh t fo rward  and wel l  described in Ref. 7, the details

of forming the kinetic energy in terms of displacement velocities ,

taking the f i r s t var iat ion , integrating by parts over time, and expressing

the resulting form of 6T in terms of time derivatives of u , u
x y

u , and 4~ are omitted here. After the ordering scheme has been

appl ied , the form of the  first variation of kinetic energy , with terms

re ta ined  to second order and corresponding to equation (52) of Ref. 7, is

if p { —  [~ + ~ (—f,sin~ + flcoS4))]6u
area

— [i — ~ (f,cos~ + ~sin~ )]6u

(3—13)

— [~~~
(_F

~sinq + ~cos~ ) — ~~ (fcos~ + ~sin4)]64

- ~ [(-~ sin~ + flcos~)
2 
+ (Ecos~ + flsin~)

2 ]6~)}dfl d~ dy

As noted in Ref. 7, the last term in this expression is by defini-

tion a third order term , h ut it is re ta ined in order to include torsional

inertia in the torsion equation.

The f i n a l  fo rm of the first variation of kinetic energy is obtained

by integration over the sectional area, which leads to the following

definitions :
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—‘—

~‘1

m E  if p d ~~ dri
area

(3—14) 3
e 

E if ~ d~ d~- area

j .iy p ( ~
2 + n2)d~ d~

— area

wi th if P5 f l d~~~d f l O
area

The final form is

61 L~ {(_mu
x + s~~

isinc~)6u + (-mu + 5
e

0 )
~~~

1
z

(3—1 5)

+ [s 
~~ 

sin~ + S
e ~~~~ 

cosqi — J~ J64}dy

The v i r tua l  work of the  applied loads is

(3-16) 61&! = ( F  6u + F 6u + m

Clearly the drag loads will now enter the equations of motion in the

same manner as the lifting airloads, in contrast with (2—1), since

F and F wi l l  consist of l if t and drag force compo nents .

Appli:ation of Hamilton ’s principle using (3—12) , (3-15), and

-: (3—16), together with (3—8), (3—9), (3—10) , and ( 3 — i l ) ,  results In the

following quantities being required to vanish:

~u terms—y

2

(3-17a) - [EA (u ’ + f- + ~f~
) ] ’  T’ = 0

39

L - - - - • -  .
~~ 

- ~.____ - .--.--~- -~~N~~~-~ - -

-----5” — - - -5-5 - — 
- - 

-5— - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -- ____________________________



r 
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6u terms
—Ic-- -

(—E I (—u ”coscP + u ’sin ~ )cos~

(3-17b) + El (u ”sin4 + u”cos4) sin4 }” + mU

— S4 )  ~~~~~ =

óu terms—

cos~ + u” sin4)sin4

(3-17c) + EI (u ” s1n4 + u” cos~ )cos~ }” + mU

_ 5
e~~

C0
~~~~~~

’
z

0

64 terms

— (GI
d 

$ ‘) ‘  — u ”[ — EI
~~

(_ u” cos4 + u” sin4)cos~

+ E I ( u” sine + U” coz~ )sirutt ]

(3—17d)

+ u”(EI
~~
(_u cos4 + u” sin~)sin4 + EI (u” sin4 + u ” cos4)cos4 )

— s  u s in e— s  U cos~~+ J~~- H  = 0
e x C Z y

In ( 3— 17 a ) ,  since it is known that for the nonrotating contilever

wing the spanwise tension T will be zero everywhere , the expression

can be in tegrated  leaving

~~~
(3—1 8) u ’ + -

~~~~

- + —
~~

--- = o
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(true only with eA = 0) . This constraint indicates that the only

manner by which axial def l ec tio ns uy en te r the problem is by the

purely geometric dependence on U and u due to shortening induced

by the lateral deflections.

In rep lacing sine and cos4 by small angle approximations , it

would be consistent with the ordering scheme to approximate the cosine

by unity. Due to the possibility of a large ratio of bending stiffnesses ,

which can result in u being large compared with ~~ , it was found

necessary to keep the second—order approximation of the cosine at this

step. This is done to derive properly certain elastic coupling terms

involving u and u , while main tain ing symmetry in the ine r t i a l

and sti f f n e s s  ma trices of the final matrix equations.

Substitution of

cos~ 1 —

(3—19)
sin~~~~~4

into (3—17) leads to

( 3—20a )  [— EI (— u” (l—~
2 ) + u”4) + El (u ”4 2 + u”4)]”

+mU — s ~~~~ = F
x e x

(3—20b) [El (— u” + u”~)~ + Et (u”P +

+ mU’ - s = Fz e z
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-5—- --5 - 5 - 5  -5 —

— (G1d4 ’) ’  — u” (— El (_u t~(1_~ 2 ) + u”c~) + El (u~ 4
2 + u”~ ) ]

(3-20c) + U”[EI (-U~~ + U~
t
~~
2
) + E I ( u’~ + u~ (l_ ~

2 ) ) 1

— s u 4 — s U  + J ~~ = me x  e z  y

Reorganization of terms and introduction of the displacements w

and v for U and u , respectively, gives

{[EI~~~
2 + EI (l— ~~

2 ) ]w ” — (E l — EI )v ”~~}”

(3—21 a)

se z

{— (El — EI )w ”~ + [EI
z
(l_c1 2) + ~

2EI ]v”}”
(3—21b)

+ m
~~~

_ s
e~4~~~~

F
x

GI
d4” — (El — El ) [(w”2 — v”2)4 — v”w”(l-~24

2) 1
(3—2lc)

~~~~~~~~~~~~~~~~~~~~~~~~~~

The underlined terms are reasoned to represent higher—order effects and

are dropped. In the case of the inertial terms coupling chordwise

bending and torsion through the o f f se t S , this is a third—order

effect relative to terms like mi~ . The final form of the three—DOF

system of equations, with some regrouping, is

{Er
~

w” — (EI
~ 

— EI ) (v ”~ —

(3—22a )
+ m~ - s = Fe z
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(3—22b) (El y” — (El — EI)(w”4 + v”4 2)}” + m~ = F

(3—22c) GI
d4” — (E l — E l )  

~~~~~ 
— IJ 2)~ — v”w” }

+ s~~~~= J ~~ + m = 0e y

This system is elastically and inertially self adjoint , which

assures that the stiffness and inertia matrices eventually assembled

during modal analysis will be symmetric. The terms containing

(El — El) represent the nonlinear coupling between the torsion and

bending degrees of freedom; all remaining sti f fnes s, inertial , and

applied—load terms represent the same familiar forms encountered in

linear beam theory. Terms in (3—22) which are underlined do not appear

in the Ref. 7 equations and are retained here as a result of the absence

S 

of a restriction on the bending stiffness ratio EI
~
/EI . Strictly

speaking, when this ratio is large compared with unity, the single

underlined terms will increase in relative importance while the double

underlined terms are negligible in magnitude.

The nonlinear equations of motion (3—22) are next adapted to

permit analysis of stability about a steady—state deflected position

due to an equilibrium lifting flight condition, which could be level

flight or a steady pullout at a high load factor. Small time—dependent

perturbations about the equilibrium operating condition are introduced

by expressing the deflections w, v, and 4 in terms of steady—state

equilibrium deflections w0 , v
0 , and and small unsteady perturba—

tion quantities w1 , V
1 

, and 
~l
:

43

-~~~



- 5 - 5 - —  - 5 - 5 - 5

v ( t )  = w + w
1
(t)

(3—23 ) v ( t )  = v + v1(t )

~ ( t) = + ~1(t)

First , the steady equilibrium deflections only are substituted 
- 

-

into (3—22) to obtain a nonlinear system of equations for the equilib—

rium solution . The resulting nonlinear steady system is

(3—24a) {EI w” — (El — EI ) (v ”q — 
~~~~~~~~~~~~~~~~~ 

=

H °

• 
- 

(3—24b) (El v” — (El — El ) (w”4 + v”~
2 ) }”  = F

Z O  Z x 0 0  0 0  X
0

(3-24c) CId~
” - (El2 

- E l ) [ ( w ”2 - v”2 )~ - v” w”~ + m = 0

App ropriate steady lifting aerodynamic loads are inserted for L and

M~ , and the assumed steady drag, which entered equations (2—1) in an
- 

~- entirely different manner, is introduced through L

Next a linearized system of equations in the time dependent small

perturbation deflections is obtained by substituting (3—23) into (3—22),

subtracting the nonlinear equilibrium equations, and discarding products

of the perturbation quantities. The linearized unsteady equations of

motion are

(3-25a) (EI W~ 
- (E l - EI ) [~~v~ + ~1v” - 4~ w~ - 2~~w”~1

])”

+m ~ - s~~ — F  = 0
1 e l  z

1

44

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5 -



- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ‘ 

—‘1

(3—25b) (EI v’ - (El - El)t~~w~ + w ”~ + ~
2v
1 

+ 2~~ v”~ 1J~~”

+ m ~ - F  = 0
1

(3—25c) — (El — El )([2w”w~ — 2v ”v~~)~ + lw ” 2 — v”
2
]~~1

— w”v” — v”w”} + s — J~ + m = 0o l  o l  e l  1 y1

Analysis of stability with this system can be done with the standard

techniques for linear systems , but first the coefficients must be found

for a given equilibrium flight condition by solving (3—24). The loads

appearing in this equation , including the chordwise forces, mus t be

expressed as linear func t ions of per turb ation displacemen ts w
1 

and

No dependence of aerodynamic loads on the f o r e — a n d — a f t  motion

• v
1 

will be considered in this  analysis.

C. Comparison of the VT and VCT Models

The VCT model (3—24)  and ( 3 — 2 5 ) ,  a l though d i f f e r e n t  in appearance

from the VT model (2—1), in fact reduces to the same form when

T -
~ and the steady lift is zero. To illustrate this , first imagine

that the steady loads applied to (3—24) are

F = 0z
0

( 3—26 ) in = 0y0

F = D
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where D is the same assumed drag force, constant in magnitude and

direction along the span , as is considered in ( 2 — 2 ) .  The solution to

(3—24)  immediately gives w = = 0 , leaving just the chordwise

bending equation as

(3—27) El v” = D 
- -

z o

Substitution of TEI
x 

for El in (3—25) together with

w = 0 gives

(3—28a) EIw~” - (T-l)EI (~ 1v
”)” + - ~~~~~ - F = 0

(3—28b ) -tEl v” + m~ — F = 0x l  1 x

(3—28c) GId4~ 
— ( T— l ) E l  [—v ”2 q 1 

— v”w~ ] + — + m = 0

The equation for v
1 

uncouples and can be disregarded . Integration

of (3—27) twice , using the zero shear and moment boundary conditions

at the free end , gives

TEI V” = D

(3—29 )

z

whe re (2 — 2 )  has been used . Subst i tu t ion  of (3—29) into equations

(3—28a, c) yields

(3—30a) EIw~” + 
iLi. (Mq

1
)” + ‘

~
‘l 

— 

~e~ l 
— F = 0
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(3—30b) GI d~
’
~ 

— ~~~ M2 (w ’~ + v”~ 1) + 5eW
l 

- + m
y 

+ 0

Finally , requiring that t -
~ , with the consequent vanishing of v

causes (3—30) to reduce exactly to (2—1).

For the more general case of a steady lifting condition charac—

terized by w ~ 0 and 
~ ~ 0 , ( 3 — 2 4 )  and (3—25) can still be cast

into a form similar to (2—1), in which the v1 d isp lacements  become

dependent upon w
1 and 

~l 
since T -

~ ~~‘ . Firs t , the nonl inear  s teady

equations (3—24) are rewritten with TEl replacing El together

with some rearrangement of terms to give

( 3—3la ) El w” — TEl [v ” — w”~ )~ ]“ = Fx o  x r 0 0 0  0 z
0

(3—31b ) TEl [v” — 
~~~~~~~ (w ”~ + v”~

2) ]“ = F
X 0 T 0 0  0 0  X

0

(3—31c) CI ~~
“ — ~~~~~ tEl [(w”4~ — v”)w” — v”

2
q~ + m = 0d o  T x 0 0  0 0 0 0 V- o

Again , as T + the elas tic bending curva tu re ab out the fl p r inc ipa l

axis (Fig.  3.1) of the  a i r f o i l  section should go to zero. But now, the

section is displaced to a posi t ion f ixed by the d e f l e c t i o n s  w , v

and of its elastic axis, and the true elastic curvature about the

ri axis is now recognized as v” —

0 0 0

In equation (3—3lb), which is the f o r e — a n d — a f t  e q u i l i b r i u m  equa t ion ,

as T becomes large and v becomes small , the term v”~
2 is of

0 0 0

higher order and can be neglected relative to v” . Removin g this term

and le t t ing  -+ 1 leaves
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(3—32) tEI [v” — w”~~~1” = F

Integrating this equation twice , using the shear and moment boundary

conditions on v and w at the free end, leads to
0 0

( 3—33 ) tEl (v ” — w”~ I = F 4~~ (q_ y )
2 — M

X 0 0 0  X - Z
o o

Here it is assumed for  conven ience tha t F is cons tan t along the
x
0

span;  of course the in tegra tions could as well be performed f or any

known spanwise variation of F . M is similar to M of (3—29),x z z
o o

except that  it represents the bending—torsion coupling effect upon the

moment—curva ture  r e l a t ion .  As T -
~~ ~ the q u a n t i t y  (v ” — w”~~ ) must

go to zero according to (3—33) . In the l imi t  the v d e f l e c t i o n  becomes

dependent upon w and 
~ 

as a r e su l t  of bending—torsion coupling.

The two remain ing independen t equa tions in (3—31) are already

arranged so that the coupled curvature quantity in (3—33) can he

recognized . Sutstitution for this quantity leads to

EIw” + [M~~~~ J” = F

(3—34)

Cl ~~
“ — EM w” — v”

2
~ + in = 0

d o  T z 0 0 0 y
0 ‘ 0

As T -+ ~ , with  v ”~ recognized as a higher—order term, the nonlinear

s teady equilibrium equations finally become

( 3—35a ) EIw ”” + [M 4 ]” — F = 0
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(3—35b ) CI ~!‘ — M w” + in — 0d o  2 0  y
0 0

These resemble (2—1) with dynamic terms removed.

A final exercise is to demonstrate that the linearized unsteady

perturbation equations (3—25) also reduce in a systematic f a s h i o n  to a

~rr system when T -* ~ . When (3—25) are rearranged with TEl

r e p l a c i n g  El 7 and the combinat ion  of steady deflections in (3—33)

rep laced by M , the linearized system becomes

(3— 36a) E Iw ~” + [M~~~ 1
]” — TEl -~~ - - ~ - [v’~’ — ~~~~ —

+ m  — s ~~ - F  = 01 e I

(3- 36b) TEI (v~ - 
~~~~

- (~~w~ + w”~~ + + 2~~ v”~~1 fl”

+ iiw - F  = 0I x
1 

4

j

(3-36c) GI 1~ 1 + TEl -
~~~~

-
~~

- [( v ~ - ~ 1
w~ - w”~ 1

)w ” + 2v ”~~~v 1
” +

— M
Z
W’
~ 
+ S

1,
W~~~~ ~~~ 

+ in
y 

= 0

The underlined terms are of h i g h e r  order  for  T I and are discarded .

When T Is s u f f i c i e n t l y  large that 
T-5

T
-5 l 

I , equation (l—36h ) bocome~

(3—37) TEI [v~’ — 4~ w~ — w”~~~)”  = F —
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The quantity B , d e f i n e d  as

(3— 38) = v~ — ~~w’; — w ”4 1

i~ recognized as the time—dependent curvature , in the linearized

perturbation th’fit’ctions , about the r~ axis of the s teady—sta te  deformed

cross section. Thus it is expected that as T ~ <
~‘ the curvature B

must approach zero .

The dynamic linear moment N is defined as

(3 — 39 ) N E — TEl B

Equations (3—37) and (3— 36a, c) can be restated , after use of (1— 38)

and (3— 39) together with t -
~~ , as

(3—40 a ) E I w ’” + [N h)” + [M 4~~) + — 

~e~ l 
— F = 0

0 1 1 - -

(3—40h ) N” = F — m~Z I x l I

( 3—40 c) (;T~~~ — M
7 

W
1 

— N
7 

W
0 
+ 

~~~~ 
— .T

~ l 
+ my = 0

1 - l

Since B -
~~ 0 , the acceleration term in the second equation could he

expressed entire ly In terms of w and 4 accelerations by working

f rom I n t e g rat i o n  of

( 3 — 4 1 )  ~ = — w ”~~

in t h i s  l i n e a r i z e d  unsteady sy st em , N (y,t) represents the moment at

s t a t  ion y due to the inst an taneous  chordwlse  In e r ti a l  loads and appl led

- 
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L inear ized uns teady drag fo r ces acting outboard of the station. Because

of the dependence of H upon w1 and , equation (3—40b) cannotzl
be uncoupled to allow for a separate calculation of M” . Thus , even

1
though v

1 can be eliminated , (3—40) still involves three unknowns

w1 ,~~ 1 , and M

The purpose of this section has been to demonstrate analytically

the connection betwe-~ VCT representation of the cantilever wing, given

by (3—24) and (3—25), and the VT system given in (2—1) and used in

Ref. 1. It can be concluded that the VCT model remains valid for

arbitrarily large bending stiffness ratio T , and that the drag

coupling effect has been satisfactorall y accounted for by the nonlinear

elastic bending—torsion coupling terms. Since the forms obtained in

(3—35) and (3—40) are but special cases of (3—24) and ( 3 — 2 5 ) ,  actual

• solutions will be found , using the latter system only, for  prac t ica l

values of T
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FIGURE 3—2 Stress Resultants and Moments
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Chapter IV

FLUTTER VELOCITY CONSIDERING VERTICAL
BENDING/CHORDWISE BENDING/TORSION (VCT)

A. Modal Equations for Small Oscillatory Motions About a Steady—State
Deformation

The model for torsion, transverse bending, and chordwise bending

of the uniform cantilever wing developed in the previous chapter is

used to determine flutter velocity with of the same set of assumed

modes used in (2—1). Use of n assumed modes in torsion , n in trans-

verse bending, and n in chordwise bending results in a set of 3n

modal equations in terms of modal generalized displacements. Since the

assumed modes satisfy the natural as well as geometrical boundary

conditions , which were obtained during the application of Hamilton ’s

principle , Calerkin ’s method can be employed to transform the equations

into algebraic relations in the generalized displacements. The nonlinear

steady—state equilibrium equations (3—24) become nonlinear algebraic

equations in the steady—state generalized displacements , which are

solved iteratively. These disp lacements determine the coefficients of

the linearized unsteady model by apply ing Calerkin ’s method to (3—25).

Then the velocity is determined for  which simp le harmon ic mo t ion of

this system is possible (neutral dynamic stability).

The steady aerodynamic loads for the equilibrium equations (3—24)

are specified in terms of incompressible strip theory. A typical air-

foil section (Fig. 4—1) has its zero—lift line inclined to the free—

stream velocity V by the angle a + 4 ( y)  . The resultant steady

l i f t  La (act i ng in a direct ion perpendicular  to V ) and the momen t

in
0 

are given by
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L = 2IlpV 2 b (ct + ~~ )

(4—1)

m 21TpV 2b2 Q.~+a)(ct + 4 )

A drag force D is also present. These forces must be resolved into

the axis system x , y, z fixed with respect to the wing root. The

required transformation is

F = L cosa + Dsinaz ao o

(4—2)
F = Deosa — L sinax ao 0

Assuming sinet a and coscz 1 and neglect ing the z component of

drag shows that the steady aerodynamic forces to be used with (3—23) are

F = 2llpV 2 b(a  + ~~ )

(4-3) F = 2flpV 2 b ( C - ct
2 - a~~)

m = 2llpV 2b 2A(a + q )

The drag force represented by C is constant spanwise, and the

definitions in (2—22) have been adapted .

The s teady—sta te  de f lec t ions  are now expressed in terms of the

assumed modes (cf. Appendix A for definitions)
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n
w = E  fo i=1 i I

in

(4—4) v = Z f q °
i=l V

1 ~~
n

= Z f,4, -q~
i=l ‘V 1 ‘f’j

Bending mode shape functions and f are identical. Substi-
i i

tuting (4—4) into (3—24) and (4—3) and applying Galerkin’s procedure

leads to

n in in

f”q° 
~~~ 

dy — (EI
7
—EI ){j~ [(E f” q )(E f~ q ) J ” f  dy

i=l i i j ~=l ~
.i ~i v=1 -‘j -

‘~ j

n n n
(4—5 a) — J~’ [ ( E  f~ q~, )(E f~ q ) (~ f~ q)]”f dy)

i= l i i v=l v V p=l p p j

= 2HpV 2b [a j~ f dy + 

~~~~~~~~ 
q ) f dy J

n n n
El f ~(~ f”q° )f dy — (E1

7
—EI ) {J~’[ ( ~ f q° ~~~ f,~ q, )J” f dy

Z 0 • i  V1 V~ V . i=l i v=l ‘f
V 

‘V
\~) j

n n n
(4—5b) + ~9 [(~ f” q° )(Z f~ q ) ( ~ f~ q~ )]“f dy)

1=1 v. v~ v=l \) \) p=1 31 31

= 2llpV2b [ ( C  — a
2
)f~~f dy - a ~~ ( ~ f q ° ) f  dyl

j 1=1 q~1~~ 1 
~1

( l< j <n)

— GI
d J~~( ~ f~ q ) f ~ dy

1=1 1 1 j

in in in

— (El —El ) { J 2 ( E f” q~ ) (  
~ 

f”~ q~ ) (  ~ f q ) f ~ dy
Z X 0 

~~~ 
W
1 ~ v=1 ‘ 0 p=l ‘V p j

n n n
(4—Sc ) — J~~( ~ f; q ) ( 1 f” q° ) ( ~ f4~ 

q ) f~ dy
1=1 i i  v=l V v~~ i=l 31 31 j

in n
— .~~~ ( ~ f”  q ° ) (  ~ f”~ q ) f ~ dy

i=l~~ i~~ i o= l  v v j

in

= — 2llpV2b 2A[ct J f~ dy + £ (  E f~ q ,~ ) f ~ dy )
‘v

~~ 
1=1 i ’

~i j
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The indicated differentiations in the first two equations are carried

out , and appropriate Integrations by parts of the resulting modal

3 integrals is performed. The first terms of each equation are then

expressed in terms of modal natural frequencies as in (2—10) and (2—11)

which leads to the form

El n n
2 xia Qq~ — —

~~
-
~~
- (T—l)  E E H

~j 
q~ q

j j  3 i1V= l ~ ‘
~
‘V ~ll

El n in a
(4—6a) + —

~~
--
~~~ (T—l) E E Z R~ V q q° c~

p=l v=l 1=1 ~ ~‘ V~~P I

- 2llpV2b~ 
V 1  

7
jV ~ = 2IIPV2bZ[ ~~r~]

- Tm 

~ ~~~ 

n

~~~

n

(T

~~~~~~ 
p=l 

H
~ 31~ 

~~~~~

(4—6b)  — —
~~

-
~~~ (T—l) E E E R . V q q~ q°

v=l p=l i=l 
1331 V p

+ 2flpV2b~a E  = 2flPV2b~~[_ 
~~~ 

(C - a2
fl]

(I  < j  < i n)

El 

+ (T-l) E 
p=l ~ 

R
PV

.. q ° q~ q~

(4—6c)  — -j-y~ 
(r—l) E ~ E R .. q° q° q,~

V l  p=l i’l ~~~~~~~~~ 
V
p 

v
V 

-5V~~~

= 2llpV2b 2R,A fl(j_t~) 
a

and N
1 

are properties of the assumed bending modes described in

Appendi x A , and represent the modal integrals previously encountered

and defined in (2—13). The nonlinear bending—torsion coupling terms

give rise to two new forms of modal integrals ,
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(4-7) H
j 31~ 

= 

~~ j U V

(4-8) R
ijpV = 

~ i j p V  -:

Equations (4—6) can be arranged in the final format used for computa-

tions by dividing the torsion equation by TIpV2Pb 2 and the two bending

equations by 1TpV22~b , using modal natural frequency relations in (2—14)

and (2—15), and nondimensionalizing with the parameters given in (2—16)

and (2—26).

MPL~ 
q (-t -l)MP i 1~ ~

( H~N~ 
~~~ 

— 

u2 

[~~
l V~ l 

V 3 1  b

(4—9a) 
~ ~1n in in a 4}3
i

” 

— 

p=l ’u=l 1=1 
R
1131~

q~ 
~~~~

—
~

-
~

j —  2 
V l  

‘jV ~~ = —

TMP i MPJ. n n
ll

~

N; U~
L 
a 

- (T-1) 
a 

[V~
l p=l 

H~311~~ b

(4—9b) 
~ n n n n 4B .

+ E ~ ~ R1. V q° q° —
~

-
~
] 
+ 2a E i = ~~~~~~~~ (C—a

2)
v=l p=l 1=1 v \)=l -~ ~V j

( i < j < n )  Mi~
[½T12 ( j_ ½) 2 .

~~~~~~~ — A]q~

MPi In
(4—9c)  + (T—l)  — j z~ E Z E RpV i i  

— —i- q~
Lv=l p=l 1=1 1

n n  ~ 
q q  

~ 
q q

~~]
- 

V l  p=l ~~
RpVl . b b 

- 

p=l V=l b b j

1= 2A a 1I(j-½)
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A solution to (4—9) can be found for a given wing configuration

once drag C , root angle of attack a , and dimensionless speed U

have been specified . The solution procedure involves Newton ’s method

and is described in Appendix C.

When simple harmonic motion is assumed , the linearized perturbation

equations of motion (3—25) are converted into linear algebraic equations

via the same steps described in Chapter II in deriving modal equations

(2—18) from (2—1). The perturbation displacements are expanded In

terms of in assumed modes and generalized displacements ,

w
1
(y,t) 

i~ l 
f~~ (Y)q~ e~~

t

(4—10) v
1
(y ,t) = 

i=l 
f~~ (Y)q~ e~~

t

iwt
~~1

(y , t)  ~ f,~, (y)q ,~ e
1=1 ‘Vj N’j

where q and q have d imens ions of leng th , whereas q~ are

dimensionless. Anticipating solution for flutter boundaries using the

V—g method , structural damping g is included by introducing a complex

elastic modulus , and the simple harmonic airloads are assumed to have

been expressed in terms of unit generalized forces as in (2—9). Wi th

the addition of the fore—and—aft bending degree of freedom , the

generali z ed fo r ces now appea r as

(4-lla) F (~~1, w 1;t ) f  dy0 2
1 

w
1

(1 �J~~ n) q
= llpw 2 b 3 Z[ Z Q ~~ ÷ ~ Q q Je~~

t

1=1 j ,  b 1=1 ~
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~~~
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-
_ _ (4—lib) F (~~1, w1; t) f  dy0 x 1 v

1
-

-5 
- cc

= flpw 2 b~~.Q [ E 
~j +n i b + 

1=1 ~ l+n , i+2 n q~~~Je~~
t

(l < j < n )

(4-lic) .~~~~ m (4 1, w 1; t ) f ~ dy

= flpw 2 b~~~[ E  
~ j +2~~, 1 

+ 
~~~1+2n 1+2n q~~ ]e~~

t

The omission of columns in the array having n +1 < i < 2n

reflects the assumption that there is no dependence of unsteady air—

loads upon fore—and—aft motions v
1

After Galerkin ’s method has been implemented for equations (3—25)

by the same manipulations required to develop (2—17), the system of

3n modal equations which determine linear stability about the steady

equIlibrium deflections appear In the form

cc .
(N — TI ~ N~ 

~~~
1
a 

z}—~-3-

n n n
+ {Q — (i~ l )MP i~ Z R . . q °

1=1 ~~
‘ p= 1 ‘~‘=l ‘-~~~ 

~U v

cc.
(4—12a) + E { (r— 1)M P i Z 

~ 
H~~~1 

q~ ~~~~1=1 p=1 - p

q ° q°

+ 
1=1 

((T_l)M Pia 
z [

31
~1 

H .~11 —ga — 2 
p~ 1 

~~~~~~~~~~~ h 1

- S M I~~ + Q
1 1÷2~

}q~ = 0
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n a
+ (T_ 1)MP ia 

~~~ ~~~

+ {M - TII’~N~MPL Z} ~~~~

(4—1 2b)
in n in

+ {(T_1)MPi
a 
Z Z R1 V q ° q° ~~~~

i=l p=l v=l 
~31 ~V 

b

~~

+ {( T~ l)MPi~ Z[ H1 g~
1- + 2 RVi=l p=l ~~~ p=l V 1

+ Q~÷~~1÷2~
}q~ = 0

(1 < j < n )

~~

/ E C (r —l ) M P 1  Z[ E H - 
—fl — 2 E E R . . q° —~-1

1=1 
a 

p=l 
p
~ i b 

p=l V l  b

cc.
- S M + 

~j+2n,i~ b

n ~ cc
(4—12c) 

~ 
+ E f(’r—l)MPi Z[ E H~ 11 ~~~~~~ 

+ 2 E ~ R ~~~q
1=1 p=l ~=l V 1  V

q q n n ° q°
+ {(T-l)r-lPi Z [ E R .—~~ —~~ - E R cc

31 
w
V

•=1 
a 

p=1 v=l llVi3 b b 
p=l V l  

puij —j;-- —~~~1

+ 
~l+2~~, I÷2~~ cc1 

÷ {½Mia [1 - fl 2 (j ½) 2Z ] }q ~ =

Here H .UV 
and R

IIPV 
are the modal integrals defined in (4—7)

and (4—8), which appear in this system multiplied by steady—state

generated displacements. The cofficients of terms which couple the

steady deflections into this system must first be constructed by the

indicated summations before the eigenvalues can be determined.
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The unit generalized forces required in (4—12) will now be expressed

in terms of the two—dimensional incompressible uns teady aerodynamics

adopted for ( 2 — 2 )  and ( 2 — 3 ) .  It wi l l  be necessary , as it was for the

steady aerodynamics , to transfer the airloads from wind oriented axes

to the coordinate system fixed at the wing root. For the present case ,

the circulatory part of the unsteady lift will be assumed perpendicular

to the direction of the freestream velocity, whereas the noncirculatory

portion will be assumed to act normal to the chord of the airfoil sec-

tion in its steady—state deflected position . The inclusion of unsteady

leading—edge suction effects will be considered in the next chapter.

To separate the circulatory and noncirculatory contributions to

the lift , La In (2—2) and (2—3) can be rewritten in the form (cf. Eq.

(4—126) of Ref. 5)

~ i~
(4— 13) La (w 1,4 1; t )  = Hpb~w

2 [~~ + + a~ 1Ie
’
~~

+ Hpb 3w 2 C(k)  [— -
~~~~ 

-
~~

— + —
~~

-
~~

-- + 
~~ 

~~~~~~~~~~~~~~~

Here the f i r s t  term on the right  represents noncirculatorv lift L
aNC

and the second term the circulatory portion La Referring to
C

Fig. 4—2 , these terms can be expressed as resultant forces in the xz

frame by

F L cosa+L cos~z1 a
~ 

aNC

(4—14)

F = — L  sina+L sin4x1 a
~ 

aNC 0
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Making the assumptions cosa 1 and cos4 1 yields the identity

(4— 15) F La (w 1,4 ~i
; t )

When it is assumed that sina a and sinq 
~ 

, the chordwise

force components become

(4-16) F = llpb 3w2a C(k) [2i ~l - - 21 ( ½ ) ~~~ ]
iWt

w
1 i4

+ 1Tpb 3w 2
~ [-s- + + a~~ Je~~

”

Preparatory to steps that lie ahead , it can be seen that when the

unit generalized forces are determined from (4—11) with the modal series

for 
~ 

, w1 , and inserted , modal integrals of the forms

~ ~w ~~~~ 
(~ )f ~ (~)d5~

1 j V

~~~~~~

will be encountered as a consequence of the nortcirculatory contribution

to (4—16). Since these integrals do not occur elsewhere and the effect

they introduce is expected to be minor , the noncirculatory contribution

to F is neglected altogether. This simplification has the result
1

that the unsteady noncirculatory force Illustrated in Fig. 4—2 acts in

the z direction at all spanwise stations.

The remaining circulatory contribution to F can be expressed ,xl
using the notation in (2—3) and after some manipulation , as
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(4-17) F = llpb 3w2a((l_Lw) ~~ 
+ [L~ - ~ + + A( l_ L

~
) ]

~~1 
e~~ t

With the aerodynamic loads given in (4—17) , (4—15), and (2—2),

where m (41,w1;t) m(w 1,~ 1;t) , the un i t  gene rali zed forces can
yl

be developed , starting from (4—11), by means of the same steps followed

In assembling (2—22). The final result is

I p 1, 1 = ~~L (i=j)

(i~ j )

~j,i+2n — (L~ — AL )Tj i

~~
( l_ L

w)a ( l=J )

0 (i~j)

(4-18) 
~j÷~,i÷2~ 

= [L~ - ‘
~~ + + A(l_L

~
)11 jj

(l<j<n)

(lc i<n) ~j+2~~,i 
= - (M

~ 
- AL )I i~

~ I+2n ,i+2n~~~~~[M~ - A (L~ + M~ ) + A2L
~
] (i .l)

(~
0 (ifl)

‘1 •0 ? . ~ l v -  In
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B. Solution Procedure for Flutter Velocity of a Lifting Wing

- ‘ The 3n modal equations (4—12), with (4—18) inserted , can be

expressed in matrix form

(4—19) ([H5] + [Q])(q } — Z [k 5]-( q} = 0

The mass and stiffness matrices M and K are real and symmetric
S 5

and are written out in Fig. 4—3. The terms in K include sums of

products of modal Integrals and the steady equilibrium generalized

displacements found as solutions of (4—9). The aerodynamic matrix

Q , whose elements appear in (4—18) , Is complex and nonsymmetric.

Equation (4—19), therefore , represents a complex eigenvalue problem

for the comp lex freq uency parameter Z . Its solution yields damp ing ,

speed , and f requency  as in the case of (2—25)  and ( 2 — 2 7 ) .

The logic used to compute neutral stability conditions from

(4—19) is diagrammed in Fig. 4-4. The primary difficulty encountered

when steady deflections are introduced is that a preliminary estimate

o f speed U
e 

must be made be fore the eigenvalue problem can be solved.

Steady deflections for U
e 

are used to generate coefficients in K

and uns teady aerodynamic loads are then computed for  large enough

reduced f r equency  that the eigenvalue corresponding to the aeroelastic

mode which flutter s has negative (stable) damp ing g . Successively

qm.-i I l  r ’ .- i ~~ ’ i , - -  f k - ,  r - t hen -nib —~ t I t ut  -d and aerodvnami c terms

v-i.. ~~~~~~~ T1~.. ~~~~~~~~~~~ ir,- r .-  , l . - u l i r  -~ in! 11 ~~~~~ 4 3 ’  1 - -  .Lim p i n c

— - . 
* h .  - - ., 

~ • 
ç- 
~~‘,4,- I ‘ hI. pit in ! - - . ‘ t— 1.. i f  In v ~ iitt —

- - . — - ~~~~~~ - . -,. ‘ ~-s~ q’ I Pl y - . V -

- - - 5 - -
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is repeated with a new estima te U until the speeds Ue and UF It
are adequately matched. The flutter speed determined for zero lift

serves as a good f i r s t es tima te for U . With care , close agreement

of the two speeds can be achieved in three or four iterations .

Three assumed modes in each degree of freedom , corresponding to

a system order of 9 , are found to give adequa te convergence for  a l l

cases. The model integrals were computed to allow in < ~ , a task

which required numerical integration of 100 quantities of type R i. 31~

and 40 of type H.
1pv

C. The Nonlinear Elastic Coupling Terms

The need to retain all terms in (3—22), incl uding third  degree

nonlinear, in order to model adequately the nonlinear elastic bending—

torsion coup ling mechanism is now demons tra ted by means of typical

app lications. Of course , neglecting higher—order nonlinear effects

would have the appeal of reducing complexity. For example , remova l

of all third—degree nonlinear terms would result in the elimination

of all terms containing quadruple modal integrals R ..
~ 31 

from both

the nonlinear steady equilibrium system and the linearized dynamic

stability analysis. In order to examine the effects of such approxi—

mations, numerical experiments were conducted wherein higher degree

terms in both the steady and unsteady modal equations were neglected.

First , static deflections arc considered. CIe,irlv , Ii the

•~~; u i . i t  i , in ~-i dit r i’ t  i d - q u . i t . - i v  r~~- p r - . - -n-
~~~ t rh .  4 t , ’ i d v — - ~ t i t ,  h ’  I.- t i . ’ n- ~

~ , w iii .’ - . i • I I.’ I. -in~~r o f  I I • t I ‘~ 
v . i’r.I It I - ‘ t if l • I hen in~

I t.w - .’ I~ .—d i.~~~’ .- ed~ - ‘ . . ‘ - r $ ’ . ! I.w’, ~~~~~~~~~~~~~~~~~ ~~~~~~ .. - ,~~~~ 
- .-.- .

-
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approximation cannot be expected to succeed. The nonlinear steady

equations (3—23) will be solved at three levels of approximation :

(1) Linear terms only retained .

(2) Second degree monlinear terms included . -

(3) All nonlinear terms included .

The linear set of modal equat ions is jus t  (4—9)  wi th the nonlinear

terms removed :

n 4B
lT~N~ —jr~ 

_~;~
t - 2 

v=l 
T
jV 

q = -

MPi q n 4B .
(4—20) JTkN T —u

~~ 
~~~ + 2a 

V l  
‘jV ~4 

= — ~~-3~ (C — a2 )

Mi2 a 
A — 

2Aa
2 3 — q~ — _____

The torsion equa t ions  are now seen to be n uncoupled and Immediately—

solveable re la t ions  for  the in generalized displacemen ts q~ . The
j

results permit solution for the bending displacements , thus eliminating

the  need for  ma t r ix  operations. Since all elastic coupling terms are

absent , de f l ec t ions  w and 
~ 

are independent of the s t i f f n e s s

ratio T and the steady dra g parame ter C . A very important conse-

quence is that the mechanism by which drag influences divergence is

missing. One concludes that (4—20) is a particularly poor representation

for steady deflections in the presence of steady drag.

R.’tent ion of t he  ~n- -ond—dt ’grec non I m eat effects from (4—9~ involves

Inc t ~ I - . — ‘~ I) - i  I I t ‘- “.— ‘ ‘  I , 1n~ ng I P.- 1 r ~ ;~ I.-  moda l l i n t . - c r ii —~
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1 
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the same iterative scheme described in Appendix C for solving the full

nonlinear system.

The behav ior of the second degree nonlinear solu tion is compared

with the linear deflection from (4—20) in Figs. 4—5 and 4— 6  . Here

it is shown how the def lect ion in the first vertical bending mode and

the first torsion mode vary with increasing speed for a fixed angle of

at tack a = 0.01 radions of the wing root. The parameters M P

A , and T for these examples correspond to the idealization of

a sailplane wing discussed in Chapter VI, and sufficient modal con-

vergence is assured by using n 3  . Numbers on the ordinate of Fig. 4—5

show the actual twist in radians of the wingtip due to the f i r s t torsion

mode ; the vertical deflection in semichords of the wingtip due to q°

• is just twice the value read from the ordinate of Fig. 4—6.

The important influence of drag on the steady de f l ec tions is

evident . But there is poor correspondence between the second degree

nonlinear deflections and the divergence speeds indicated in Fig. 4—5 ,

which are solutions of the linear static stability determinant (2—28).

This discrepancy is mos t pronounced when C 0 , and the rap id divergence

of the second—degree nonlinear def lec tions for  all val ues of drag

suggests t rouble  wi th  the second—degree approximat ion .

Figures 4-7 through 4—10 show solut ions of the complete non-

linear system (4—9) for the same wing configuration , together with the

linear results. Correlation with the divergence predictions appears

to be excel lent , and th sudden blowing up of d v f l t ’tt Io ns eharacterist I.

I t i  the —
~ .

- ‘  ti~I— t. ’i~r .-u - n.,n i Iii, ,m r solut I t ii- ~ I i ’ ~~ • -n - ’i i te  i - I  - sin~ ,- I P.-

~ - - r  i t  Iv. p r - -  edur.~ •,...- .! • ‘ .i.’l - . $ •‘r nell I l i i.-,, .1, - ’  1. Ion. - .‘~~~-n - • - -~



— —  z~~~- ---- ‘——- --—--—-

with the linear solution as an initial estimate, nonlinear solutions

which do exist for C=0 above the classical divergence speed cannot

be obtained.

The full nonlinear solutions conform with nonlinear behavior

expected by in tu i t ion. For zero drag, the vertical bending and torsion

deflections should fall below the linear solution owing to the effec-

tive increase in stiffness “seen” by each degree of freedom due to

deformation in the other. This e f f e c t  is observed. The slight rear-

ward chordwise displacement (Fig. 4—9) for C=O when w and 4,

are large comes from bending—torsion coupling , and the negative contri-

but ion of the second torsion mode (Fig. 4—10) reflects a redistribution

of elastic twist toward the wingtip where the curvature due to w
0 

is

less. Drag alters the deformed state radically and causes lar ge

displacements  at much lowe r speeds .

A clue to the  reason why the second—degree terms alone are m ade—

quate is found by looking at the sensitivity of solutions to changes

in the bending stiffness ratio i . The second degree nonlinear

solu t ion for  bending def lec tions , given in Fig. 4—11, reveals increas-

ingly poor behavior as T is increased. Conversely, the complete non-

linear solution behaves as Intuition would anticipate , becoming

insensitive to changing T as this parameter grows toward (Fig. 4—12).

In Chapter III the behavior for T-~-~~ of the steady nonlinear

equilibrium equations was analytically investigated . In the discussion

f o l  lowing equat ion (1— fl) It was point ed out that the q u a n t  I t  v

— W ” I , - ; . r . - - -4 . - I I I  4 r h .  - I t I _ I l - II I t  I I, -  ~~~~~ th i -  pr i n e i p i l  . t x f ~~

- li,,riIw i 
~. ‘- . -n . f In ~ $ 

~~~ I ‘ u  l u  $ I .  - • - . 4  i t  f i t i  I u.’ i I~’n, int’l II; ‘ -
~~~~~q
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quantity should vanish as T ~ . In this limit any chordwise

def lect ion is a geometric consequence of elastic coupling between 4,

and w ; terms which contain the product T(v” — 4,w”) approach a

f in i te  va lue . Now , re f e r r i n g  to equations (3—24), it can be seen that

In the second degree approximation this product is retained in the

second equation but not in the vertical bending equation (where w”4,2

is dropped but v ”4, r e ta ined) .  Likewise in the torsion equation ,

w”2 4, is d ropped but v”w” is kept .  The resul t is that terms
0 0 0 0

contain in g iv” remain and blow up in the limit T -
~

- . Accordingly,

the conclusion is reached that , for structures representative of air-

craft wings for which t is reasonably large , the third—degree terms

containing the product w”4, must be retained . It may be added that ,

although this elastic coupling effect was neglected in the helicopter

blade equations developed in R e f .  7, in tha t case the orderin g scheme

required i to be on the order of unity. Another point is that the

remaining third--degree terms in ( 3 — 2 4 ) ,  whi ch con tain the prod uct

v”4, , actually can be neglected when T is large .

Since it has been de term ined tha t third degree terms cannot be

excluded from the steady nonl inear equil ibrium analys is, it follows

that they must also be kept in the linearized unsteady perturbation

equations (3—25). The original dynamic stability equations used early

in this investigation , on the other hand , consisted of a linearized

unsteady perturbation system based on the second—degree nonlinear

approx imat  I o n .  That Is , t h e y  a ri’ t he resu 1 t ot rcmov I up a ll t en~ts

t I l t  - i  In t i i  ~ t he tm’d.i I In ! m~ t~~~i q R 1 t ru in I • ? ) . I r regn I , - .‘~ - ‘.‘ I - - r

c- ’ th. f L t ~~.’ - . : -. - . , $ w i t h  In l r , .’ $n l ins - I. . - ,  
‘ ‘ ‘  u - k  • w~is dl. - •‘..I .

— -
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as was an extreme sensitivity to large T which could not be justified

physically . Furthermore, linear steady—state deflections were used——

a particularly unsuitable approximation for inclusion of steady drag.

Examples of these original flutter calculations appear in Figs.

4—13 and 4—14. The former gives a comparison of the early results

with the full analysis by (4—12) for the sailplane example, showing

how the simpler approxima tion d i f f e r s  s ignif icantly in f lu tter speed

even in the presence of moderate steady deflections. Figure 4—14 ,

based on a different wing configuration , gives an idea of the difficulty

encountered for large T when using the simpler analysis. (Note that

the steady deflections are quite small in view of the fact that this

example Is a large—aspect—ratio wing). All of these stability boundaries

abruptly terminate , at which point the elgenvalue solutions began to

behave erratically. In con tras t , flutter solutions of (4—19) can be

obtained fo r  a rb i t r a r i ly large steady d e f o r m a t i o n s — —  indeed for  t i p

deflec tions well beyond practical limits of material linearity.
V

D. Comparison of VT and VCT Calcula tions

The f l u t t e r  velocities found using the VCT model can be checked

directly against velocity computed from the VT model developed in

— Chapter II. Although such a comparison restricts the former method to

the  special nonlifting case w = = 0 , its basic approach of

l inearized perturbation motions about a steady—state deflection solution

can neve r the l e s s  he tes ted  by inc lus ion  of steady drag. This is

h.- . 11141  th e ,It i’.- u t  I , . !  t’nI. - r - ~ t he- 4 t . i h i l  I t v d,- t . - I - m i n l , l t  t h , ’ u teh

i ii.! ~~ t -  l en t  • I. ,’.nuIIn* -“  v . flt.- i tu ’t  Ii.- I -~. he~ ijln,- p.~ i u . t  Ion i’ ’
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motion is uncoupled when w = v = 0 , and f l u t t e r  modes involve
0 0

just vertical bending and torsion.

The VCT st abili ty equations were analytical ly reduced to th e VT

form ( 2— 1) in the last chapter by specify ing a = 0 and T -- . This

ag reemen t is ref lected in numerical results , as evidenced by Fig. 4—15.

For an exceptionally large magnitude of drag, C = 0.04 , chosen to

magnif y the impo r ta nce of drag coupling and hence the steady deflections

in the stability analysis, the two methods are used to compute flutter

speeds for  the same n o nl i ft in g  configuration . The VCT anal yses were

made for  i ranging from 1 to 10,000.

As is always t rue  for  El = El , the  drag coupling e f f e c t

vanishes at T = 1 with flutter speed unaffected by drag . At the

other extreme , for  i = 10,000 the compu ted f l utter speeds for

C = 0.04 differ by a mere 0.052%. The Ref. 1 f l utter speeds calc ula ted

for th i s  same conf igu ra t ion  are also shown and agree qui te  wel l .

When one examines the VCT dependence of f l u t t e r  speed on T

(Fig. 4—15) , the e f f e c t  of drag is apparently insensitive to T over

the range of this parameter representative of practical aircraft

applications . Hence the VT system (2—1) does not suffer by its

inherent assumption that  T -+ —

Table 4.1 presents a fur ther  comparison of resul ts  from the two

approaches for a different configuration , in which modal convergence

is emphasized. Of course , since r = 50 eAact agreement cannot he

expected .

I - ‘n~ - • t~~~u l 1 -  . -  - ‘I Ii • i t  t.’ r- q , , 01~~4 ,ind • T . ’ ~~ I I u fl ,~~~ it~~,t 1 ‘40 mod.’ .h.

$ - , t l~. Vf’ T • , t I ’ u ’  l -ru~ I. -I-’eu.pnt.- I in T ~I-~)~ 4 . t -’ ’  • .- .  ~~•. ,, I-
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lift and In Table 4 .3  for  a l i f t ing  condition specified by a = .01

rad . In the la t ter  case , the apparent slower convergence is related

to the steady l i f ting  deflections (also tabulated), which also vary

- with n .

L. 
_ _ _ _  _ _ _



- ~~~~~~~~ I,w - ?-r ‘ r~r ~~.co!r4r ~~~~~~~~~~~~~nw— 

~1

_ _ _ _ _  

UF, VT UF, VCT

2 4 .260823 4.258457

3 4.260879 4.258351
4 4 ,260882 4.258335
5 4.260889 4.258336

TABLE 4.1 Comparison of Modal Flutter Speeds Computed with the
VT and VCT Systems . (M = 40 . ,  P = 0.4, i = 0.25 ,
A = 0.1 , S = 0.1, T = 50 , C = 0 .04)  a

n = l  n = 2  n = 3  n = 4

UF = 4 .15027 UF = 4.183899 UF = 4.183881 U
F 

= 4.183916

= 0.85254 
~F = 0.088768 

~F = 0.88757 
~F 

= 0.88758

ANPL. PHASE ANPL . PHASE AMPL . - PHASE AMPL. I PHASE
q 2.1800 224.54° 2.0650 223.87° 2.0659 223.87° 2.0659 223.87°w

1

q — 0.6345 —46.85° 0.6309 —46.84° 0.6308 —46.85°w2

q — — 0.0107 — 4.46° 0.0107 — 4 . 2 6 °w3

q — — — 0.0022 1.89°
w
4

1.0 0° 1.0 0° 1,0 0° 1.0 0°

- 0.03O67~ l99.53° 0.030751199 .700 0.O3075~ l99 .70°

q - - O.00340~ - 5.55° O.00339
F 

5.67°

- - - 0.0059 I 2 2 ~~~49°

TABLE 4.2 Modal Convergence for F l u t t e r  at 7,ero Steady Lift. (M =
P = 0.01 , i 0.2S , A = 0.1 , S — 0.1 , — 2S ., C =

_ _  -5 - - --- --5
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n = 2  n = 3  n = 4

= 3.5495 UF = 3.5329 UF = 3.5315

= 0.68200 
~F 0.67468 

~F 
= 0 .67276

1.19055 1.18142 1.18074
1

0.01336 0.01333 0.01333
2

— 0.000817 0.000818
3

q~ — — 0.000151
4

q° 0.002270 0.002296 0.002305

—0.000279 —0.000284 —0 .000284V .,

— —0.000033 —0.000033
V
3

— — —0.000005

q° 0.0087100 0.0087591 0.0087656

0.0000373 0.0000915 0.0000983

q — 0.0000017 0.0000090
‘r3
q° — — 0.0000013

A1~~L. j PHASE° ANPL . 
I 

PHASE ° ANPL . PHASE °

q 2.4492 227.45 2.4765 227.68 2.4860 227.76

0.52487 —26.65 0.50948 I —26.27 0.51068 I -26.23
- 0.01637 j - 6.54 0.01612 I - 6.57

q - - ( 0.00250 I - 1.47

q 0.84595 — 4.77 0.85914 — 4.89 0.86569 — 4.98
q 0.03071 179.03 0.02979 180.02 0.02916 180.20
V
2 -

V
3 

- 0.00923 172.67 0.00532 1 172.76
q — — 0.00122 172.56V
4 I

q~ 1.0 0 1.0 0 1.0 0

0.07 178 -2 1.65  0 .07798 I -20.83 0.0794 7 -20.73
— (

~.O2
’Q — ~.83 0.()2Q .~

ct —
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I ‘.t~~.- t Ie~ .* f ,- V  Pi ..,l.- ? ~ ~~~~~~ i i’ .  • - .  • - ~

- - I .

-~~~~~~~~~



- ~-5-5-5•~--5’-5 - __-_--a. r .__
~~~~~~~~ 7 ’  - - - - ‘  ~‘- r - -arnw ,~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

F~0

Lao

~~~~~~~~~~ w
oJ 

i
~~ o~~

FIGURE 4—1 Resolution of Applied Steady Loads into Componen ts
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CONFIGURATION :
M ,P,i~~,A ,S , r , n

L~
SSEMBLE M 1S

SPECIFY FLIGHT
___________ CONDITION:

a, C , Ue

SOLVE FOR
q~ • , q;.

ASSEMBLE K
8

AND COMPUTE
ITS INVERSE

ESTIMATE k
4

L~~
MPU TE 

~Q I I
4

SOLV E FOR COMPLEX
EIGENVA LUES OF

[!K~i’(lM~I ÷ IQ I ) - 
~~~~ ~q~=O

[~ii~ITE Q,U,g FOR ZERO FINDING
ALL EIGENVA LUES RO UTINE FINDS

k FOR WHICH g= 0

FLUTTE R~~U D E ?~~~~~ ’~~~~~ [
WRITE 

~~F’ 
U F

YESJ~ EIGENVECTORS
NO LAST FLIGHT 

_______ 
FOR FLUTTER

CONDITION ? ?4j DE

l END

FIGURE 4—4 Flow Char t f~ r Solu tion Procedure Using V—g Method
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— — — LINEAR

SECOND DEGREE
NONLINEAR

04
02 

1
1
1
1
1
/

i

.01 - 

.01 
.005 

0.

/ LINEAR

DIVERGENCE
.04 ~.02 ~.01 ~.005 FOR C= 0.

0. 1. 2. 3. 4. 5.
U

FIGURE 4—5 Deflec tion of the Firs t Torsion Assumed Mode for Ct = .01
and Increasing Speed , Comparing Linear and Second—Degree
Nonlinear Solutions. (M = 9 .4 , P = 0.01 , 1 0.25.
A = 0.1 , S 0.1 , T = 2 S , and n = 3)
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1 .02! I I /• 1 ( .011 1 I

.02 - / /  / /oo~ / / /
I / / / 1/
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1 / 1 1  1/
.01 

- / / /
/ / / LINEAR

/ / DIVERGENCE
// FOR

_______ 
.04 ~.02 ~.01 ~005 C 0.

0. 1. 2. 3. 4. 5.
U

FIGURE 4—7 AmplI tude of  the First Torsion Mode for a 0.01 and
Increasing Speed , Comparing Linear and Full Nonlinear

Solutions . (M = 9 .4 , P = 0.01 , i~ = 0 . 2 5 , A 0.1. S 0.1 .
T = 25 , and n 3)
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Figure 4—10 Amp lI tude of the Second Torsion Mode. (Same conditions

as in Fig. 4—7)

84



— ..- ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Yr -. —

-

-.5...
.55.5. C

o N
N

N -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5’.
’ C — S

).i Lñ\
\
\ 

- C,.,

U

U

W e

o

o ~~~~~c~j

C

•• 0 ) 0
I-

a~I . 0.

~0C 
~o 0 0 )U s o

< V a

I —

I -~
0I I i —

U, Lt)

c~1

85



—

C
‘.4

o
N O

II -

C
‘5... ‘.4

‘-4
C0z

-.4
S

r-.

U)

.5-4

o
ti N O  - . .,- 4

I— U,

° “ =
I-

C U )

- c..J
C C

Ca
— ~-.
.5-4

a) .5.4
— 

~
..C

(5
•
C ~.(5
•o C

C •—

I • C

5—

— O
0.0.

-

5-4

I 0I I I i I —4

C, u~ U,

c~1 C~4

86



- - ~-_-_--_ __ -_ _ -c_• p~~fl .
~

_
~
_ •_

~—; -- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ —_-—_.

0
1.1
C I I
a)

C,)
a)

~~ —
.5.4

00

O i l

O~~t

C
I C U

E

~~ C) .—

• LV

LU

I Z 0.11
0 .5-4

I z
-
~~~LU

U) Z Q ~~~ii; ~~~z

-

.7 U< I I

5 0 ) 0•(j) /~~ 
I

/ I CV ‘0
‘ 00/ I - N CaI-. -- I U,

/ c

~ / 0 ) 0
~~~i ~

‘ 0)’.I II. n I  0 - 4~L
7- f  C~~~C a 0
t I D -1 /  0J X Lr~

- . 4J~~~~II
—4 0.
I
~
-<

~~
-

-r
5$

/
‘ I  I I I

L
87

- - . • - - 5 - ~~~~ -~ -~ - ‘-‘5-’ ~~~~~ -~~



—5--..-’ -5---—. 
~~~~~~~~~~~~~~~~~~~~~ - -‘~--.—-5-- -‘ -.

~
-------—— 

-5-—-.—- --=--~.5--~—..——--—--- 
-

- C.)

C
.5-4
‘0
C
0)

0)
C O
-4

-
‘00

C
.0 -0 0

‘O il
C
C O O

.5

C —
0)
00— a)N O i l
CO
— C/~0.
U , .
‘.4
0 .

C
0.

--4 11

~~ 
E

CO Ii
C
4)

.5
O 5$

0
Cc. 0 •

—

~~~ O I l
5— 4_I

C
SC.

I~-1 5 

.5I,

~~~ C O C

CC
-3

C V I I

0 0 . -0 -

0
I— 

4.1 t~~
II

88

_ 
—5-- — — - - ‘  

- -.---‘- -,
~~~~~~~~

,.=-——- —5--’.- —5--’,. .5-.



-5-- --- ’ - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
.
~
- —

0— o
• 0

C
‘0
0

o~~~ I
Li

II. I~

- 
5 1 1

I -
I I S I’~ ~fl

C -

~~~~ lI tJ, II

I IL

H N)
- iL ,  Ii

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I -

II I 
______

0~- Co . . “5

U- 
P4.5 o

89

- - -- - ‘ 5-~~~’~~~~~~~ 
_~~~~L , _  ~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ - ___________________



—-——_-..-~~~~.‘5 
- ‘-- —~...~~ ---—-—— ~~~~. -~~~~~~~~ -

Chapter V

THE DETERIIINATION OF AEROELASTIC MODES FOR ARBITRARY VELOCITY

, - A. Incompressible Strip Theory Airloads for Arbitrary Motion

The procedure for determining flutter velocity developed in

Chapter IV has several drawbacks. It requires a matched point analysis

in which an estimated velocity U
e used to calculate steady deflections

has to be iteratively matched to the lowest calculated flutter speed

UF for the proper structural damping . Consequently the solution for

a stability boundary over a range of lifting conditions can be lengthy .

Furthermore, intermediate computations have no physical significance

and are of limited qualitative value. The behavior and degree of

stability of individual aeroelastic modes, which becomes more inter-

esting with the addition of the fore—and—aft bending degree of freedom ,

has proven to be difficult to deduce from the V—g solutions. The

only quantitative information available pertains to the neutral stability

S conditions found for the mode which experiences flutter.

We would like to have physically meaningful information regarding

dynamics of the system at any desired speed . That is, we would like

to know the complex eigenvalues of the aeroelastic modes at subcritical

and supercritical veh cities . Obviously a major drawback of the V—g

method is its dependence upon simple harmonic air loads.

Several solution procedures were studied , which replace the

Fourier transformation with respect to t by Laplace transformation

with respect to t and obtain at least an approximation to the modal

stability below and above the flutter velocity. The p—k method , a
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British flutter analysis technique (Ref. 8), uses the same simple

harmonic airloads but assumes that these loads are approximatel y corn—

plex elgenva lues s a + i~ , where w Is the frequency used In

calculating the airloads and ja I << Iw I -

Another approach, commonly applied in helicopter blade s t ab i l i t y

analysis, involves use of quasisteady aerodynamic theory by assuming k

is small enough to permit C(k) 1 . Laplace transformation of the

system then yields only linear and quadratic terms in s . Linear

matrix techniques can then be used in determining the roots. This level

of approximation neglects entirely the effect of the unsteady wake upon

the circulatory airloads and is not appropriate for the magnitudes

of reduced frequencies observed in many flutter calculations by the

V—g method.

A third possible course is to apply an augmented—state method ,

which approximates the actual unsteady aerodynamic loads for arbitrary

motion with a transfer function relating airfoil displacements to loads

having a rational Laplace transform , resulting in a linear matrix eigen—

value problem for the aeroelastic modes. Goland and Luke (Ref. 9)

used this route to study wing bending—torsion flutter. They adopted

the R.T. Jones (Ref. 10) approximation to the Wagner indicial lift

function to express unsteady airloads in rational form , taking the

Laplace transform in time. In addition to their accurate description

of the basic bending—torsion aeroelastic behavior at all flight speeds ,

Goland and Luke demonstrated that the severity of flutter cannot be

reliably inferred from solutions by the V-g method.
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Each of the techniques mentioned above attempts to gain information

about aeroelastic modes whose elgenvalues have nonzero real parts. The

true effect of the unsteady wake on the aerodynamic loads for arbitrary

motions is approximated to varying degrees. This is done quite well

for most motions in the case of augmented—state methods , marginally

in the p—k method , and not at all In the quasisteadv case.

For present purposes all of these schemes were rejected in favor

*
of the more exact approach developed by Edwards (Ref. 11 ). An Impor-

tant contribution of Ref. 11 (adapted from Sears, Ref. 21) is the

def in i t ion  of a generalized Theodorsen function to represent the exact

circulatory two—dimensional Incompressible unsteady airloads in the

Laplace domain for arbitrary motions. The generalized Theodorsen func-

tion is expressible in terms of the modified Bessel functions of complex

argument K and K aso 1

K1
(a)

(5—1) C(~) k ( ~~) + K
1
(s)

where

sb
s =  V

Although previous investigators had recognized that this form was

convergent for the righ t half plane , representing divergent oscillatory

motions wi th  Re(s)  > 0 , the restriction on the integral definitions

of the modified Bessel functions caused some investigators to believe

that convergent oscillatory motions (s in the left half plane) could

*See also Milne (Ref. 22).
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not be so represented. Edwards observed that K (s) and K
1
(s) are

defined and analytic throughout the s—plane except for a branch point

at the origin. When one places a branch cut along the negative real

axis, C() can be shown by analytic continuaLlon to relate circulatory

loads and displacements throughout the s—plane except along this cut .

It is , in e f f e c t , an “aerodynamic transfer function” in the Laplace

domain.

With substitution of s = 1k in (5—1), the familiar Theodorsen

function of reduced frequency for simple harmonic motion Is recovered.

Althoug h arbitrary motion Is now being considered rather than simple

harmonic motion , the two approaches yield similar forms when the initial

conditions arising in the transforms are neglected. In fact , the simple

harmonic airloads (4—18) and (2—3) can be used for arbitrary unsteady

motion simp ly substituting C(s) for C(k) and s for 1w -

The modified Bessel functions are computed from their ascending

power series expansions, as mentioned in Ref. 11 and described in

Appendix B. Since the transforms of aerodynamic loads will be multip le—

valued func t i ons  because of the branch point of C(s)  at the orig in ,

the convention

— 11 < Arg(s) < 11

is used for the cut on the negative real axis. The generalized

Theodorsen function is computed by Edwards in the form C(~e
10
) for

representative values 0 < 0 IT - It Is shown to approach 1 as

r -
~ 0 and ½ as r -

~ ~ for all 8 .
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With the abi l i ty  to compute unsteady two—dimensional incompressible

airloads for arbi t rary  motions in hand , the simple harmonic stability

anal ysis developed in Chapte r IV can be generalized for this case. All

of the true aeroelastic eigenvalues and eigenfunctions can be obtained

for any prescribed speed Ti - Stability can be displayed with root

locus diagrams . The solution technique is developed in the following

section .

B. Solution for the Aeroelastic Roots by Means of Assumed Modes

Formally , the procedure for developing the modal equations needed

for the true aeroelastic modes throughout the complex plane begins with

Laplace transformation of the linearized equations of motion (3—25).

The transformed perturbation displacements are then expressed as series

expansions in the assumed modes as

n
w1(v ;s) = ~ f ( y )q  (s)

i 1  W
i 

W
i

n
( 5—2 )  v 1( y ;s) = ~ f (y) ~ (s)

1=1 ~i, ~i

~1(v ; s)  = 

~~~~~

A system of homogeneous , linear , algebraic equations in the generalized

displacements ~~ ‘ 
, q,~, can then be derived by Galerkin ’s

I I ‘t’j

method , as before . Nontrivial solutions are given by the zeros of the

determinant in s . Since the coefficients in this determinant which

S arise f rom the aerody n amic loads wi l l contain the nonrational function

C(s), this will not be a polynomial eigenvalue problem. Roots

s a + iw will thus have to be obtained by iteration.
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Since full development of the modal equations is analogous to that

for the simple harmonic case, the stability determinant in s will

simply be constructed directly from the modal equations for simple 
‘

1

harmonic motion defined by (4—12), (4—18), and (2—3). One replaces 1w

by s , ik by s , and eliminates g - The elements of the aerodynamic

matrix given In (4—18) for simple harmonic loads become, for arbitrary

motion , S

(1=j)

10 (i~ j )

~j , i+2n —(E~ — AL
W
)l
ji

- E~
) a ( i =j )

t o  (i~ j )

~j+n , i+2n — I
-� — 1 + A ( l — L ) ) 1

11
cz

(l’i~n) 
~j+2n,i 

= — A ) I i~
(l~j~n) 2

= ~ ½[f~L~ - A(L~ + ~~~ + A ci ( i=j )

10 ( i#j )

v , i+n 
= 0 for 1 V ~ 3n

in which

I L  = l + 2 ~~~~~

_ _

(5-4) <~

L
~~ 8~~~~
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These aerodynamic loads are based on the assumptions discussed prior

to Eq. (4—13).

With the same mass and stiffness matrices M and K illustrated
S S

in Fig. 4—3 , and the aerodynamic matrix Q whose elements are defined S

by ( 5—3 ) , the mat r ix  form of the modal equations in s becomes

CI
( 5—5 ) { ( [ M ] + [~ ))  + 

~~~~~~~ 

[K 1){ q(s )}  = 0

(5—5) iy be compared with the simp le harmonic form (4—19) .  It is

convenient to de f ine  a dimensionless Laplace transform variable

( 5— 6 ) p E

which is related to the reduced Laplace transform variahle through the

dimensionless velocity by

(5..7)
V 

~

The stability determinant thus takes the form

(5—8) p 2 ( [ M 5 1 + [~ 1) + [K]~ = 0

Zeros of this determinant will yield 3n exact roots for the aero—

elastic modes in terms of the 3n assumed modes. These roots describe

modal frequencies and stability at the speed 13
e used to calculate the

steady—state deflections which enter as coefficients in the stiffness

matrix .

A computer program was developed to locate numerica l ly  the zeros

of the determinant (5—8) ; the logic Is outlined In Fig. 5— 1. ThIs
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fo rmat proved to be quite convenient for constructing root locus

diagrams having either the speed U , the root angle of attack a ,

or the drag parameter C as the changing parameter. Any of the impor-

tant aeroelastic modes , at any degree of stability, could be traced

through the complex p lane as long as the initial guess of s was

suff iciently close to its particular root locus .

Since the determinant order is 3n and n > 2 is desirable to

mod el adequa tely the physical sys tem , numerical expansion of the

determinant was not practical . A lib rary subroutine , emp loyed to

calculate the complex determ inant , proved to be the source of numerical

difficulties . It was found that for 1 < n < 4 and a = 0 the

Fig. (5—1) program gave accurate results when compa red to parallel

V—g method neutral stability computations , agreeing to at least seven

dig its in flutter speeds . For n = 2 and a ~ 0 , which gives rise to *

steady deflections due to lift , similar good agreement was encountered.

But for n “ 3 and a ~ 0 , the pr ogram converged on zeros which

did uct match the neutra l ly stable V—g predictions and were obviously

incorrect from a physical standpoint. Subsequent investigation revealed

that the numerical difficulties originated in the library subroutine .

When a = 0 the fore—and—aft bending degree of freedom Is dynami-

cally uncoupled , and the order of the determinant which was actually

computed by the l ibra ry subrout ine  was reduced to 2n . Thus, for

n = 3 and a = 0 , the actual computed determinant was of order 6,

whereas for n = 3 and a ~ 0 the order was 9. For the latter case

the actual magnitude of computed determinants was often 0(1016)

while for a = 0 the n 3 de t e rminan t s  0( 10 10) . For n = 2
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and a = 0 determinants again wer e 0( 10 10
). The magni tude of the

compu ted de te rmi nan t thus appears to be rela ted to the numeri cal

d ifficulties. Since n = 2 results are judged to mode l the problem

adequately and never encountered numerical problems , correction of the

above diff iculties was not pursued.

As a result , all root loci shown herein for steady lifting condi-

t ions involv e n = 2 - As will be discussed , however , this restriction

does not compromise the modeling of the physical system nor prevent

q u a l i t a t i v e  unders tanding  of i ts  behavio r. Fur thermore , numer ica l

results always agree reasonably well when compared with V—g computa—

tions for n = 3 , a~~~0.

The algorithm used to estimate the zeros of the determinant in

the s plane , using an initial guess s , is illustrated graphically

in Fig. 5—2. The comp lex determinant is first calculated a t  S and

at the two related points s + .001 and s + 1.001. Points A and C
0 0

a re then de te rmined , at which l i nea r  e x t r ap o l a t i o n  In the  two or thogona l

di rect ions  p red ic t s  tha t  the real par t  of the d e t e r m i nan t  w i l l  vanish .

S i m i l a r ly  points  B and D arc predicted , for which the imaginary part

vanishes by ex t r a p o l a t i o n . A new guess fo r  the root Is then

determined as the intersection point of dashed lines in the  f i g u r e .

The process is repeated until satisfactory convergence is realized.

This simp le scheme worked quite well and never failed to converge on a

root, usua l lv within four or five iterations . The convergence c r i t e r i o n

used was generally I l s i l — l0~~ - Typical performance of the

al gori thm Is documented ln Table 5.1.
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C. ~~~~~~~~~~~~~~~ Aeroelastic Modes

The mode shapes associated with roots determined for arbitrary

motion by the determinant iteration method were conveniently calculated

w ith the same l Inear eigenvalue routine applied in solving the simp le

h a r m on i c  s t a b i l i ty  problem . For a root computed by i t e ra t ion, the

nonrationa l aerodynamic terms containing C(s) In the matr ix  0

can be immediately evaluated. Thus one is led to a conventional matrix

e i c e n v a l u e  pr ob lem , which obtains the same root as one of Its eigen—

va l ues and al so pr ovides its eigenvector. This approach worked well

and , as a bonus , verif ied the accuracy of the roots computed by the

d et er m in a n t  i t e r ; ’t i o n  scheme .

S it-i ce numerical d1fficultie~ were encountered with the determinant

eva l u a t i o n  r o u t i n e  fo r  n 3 and a ~ 0 , this eigenvalue appr oach of

rechecking Its results for n 2 , a ~ 0 (and for all n with a = 0) *

Is valuable. It offers the only means of verify ing computed roo ts

lyi ng off of the 1w axis. Correlation to at least six significant 
55

-

dig its was a l w ay s  observed . Moreover , the accuracy of the n 2 *

- t  � 0 determinant iteration solutions has been checked for a few

representative cases by letting n = 3 in the elgenvalue routine , wi th

the known n -~ root as a first guess to evaluate the aerodynamic -‘

loads , and iterating until the true n 3 root is obtained. Two

cast ’s f o r  w h i c h  this was done, together with their eigenvectors , are 
i- S

shown t f l  Table ~~ where n 4 roots are also given . The n 2

results obtainable by the determinant iteration routine are thus seen

to he •i’.- t -~’p t a h l v  a c c u rat e  even for the higher frequency mode .
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D. Inclusion of Unstea Chordwise Loads Due to Leading Edge Suc tion

Since motion of the wing in fore—and—af t bending is permitted ,

unsteady chordwise loads can participate in the dynamic stability

problem. Unsteady two—dimensional incompressible airloads given in

Eqs. (4—18) and in (5—3) are strictly based upon the assumption that

the instantaneous resultant unsteady lift on any airfoil section along

the  span is always perpendicular  to the direction of the free stream

v e l o c i ty .  Two—dimensional  Incompress ib le  p o t e n t i a l  f low theory , however ,

does predict an unsteady leading edge suc t ion  fo rce  which  arises from

the inverse square root singularity of the vorticitv distribution along

the airfoil chord at its leading edge. This effect will he included

into the analysis within the framework of the linearized unsteady per-

turbation theory used to determine stability . The effect of the unsteady

propulsive force on stability can then easily be isolated by comparison

of roots computed for the (4—18) airloads directly with roots determined

w i t h  the  a i rloads  derived in t h i s  sec t ion .

The exis tence of a l ead ing—edge  s u c t i o n  force  due to the  l e a d i n g —

edge singularity was determined by Von Karman and Sears (Ref. 12).

Greenberg ( R e f .  13) in deve lop ing  the propuls ive  f o r c e  on an a i r f o i l

in an o s c i l l a t i n g  s t ream , s t a t e s  t h a t  a p ropu l s ive  fo rce  a c t i n g  on the

a i r f o i l  in the ups t ream d i r ec t ion ,

(5—9) F = floC~.

a r ise s  f r o m  the  uns teady  vor t i c i t v  d i s t r i b u t i o n  w h i c h  behaves at  t h e

lead ing  edge as

2C
( 5— 10) yj  — 

F

x -  —1 /b v’~+lx — l

— 
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In th i s  application the coefficient CF 
will contain contributions

from the superposed vorticitv distributions due to the steady and the

u n s te a dy  lifting flow fields. Therefore C
F 

w il l  be a sum of steady

and unsteady parts , and will involve a steady portion , a linear

unsteady cross multiplication part , and a nonlinear quadra ti c uns teady

term . In the context of the linearized unsteady perturbation approach

to stabilit y analys is, only the cross multiplication term will enter

the dynamic equations . To include consistently the nonlinear unsteady

propulsive force effect on stability, the nonlinear structural coupling

terms discarded during linearization would have to be reintroduced.

S 
As a consequence of linearization , the unsteady propulsive force

can he included only when both steady and unsteady vorticity distribu-

tions are present . Thus the case of zero steady lift will have no

contribution due to this effect to the state of stability. The effect

will become incr eas ingly pronounced as the s teady lif t is increased .

The vortici tv singularity strength C
F 

in (5—9) was given by

Garrick (Ref. 14) for an airfoil oscillating in a uniform stream as

(5-11) C
F 

= 
~~~ + Va + b~~(½-a))C(k) - ½ba}

with h positive downward . Converting to present notation , introducing

the generalized Theodorsen func t ion, and introducing superpos ition of

steady and unsteady deflec t ions gives

ci -
~ a + +

h - ~~- w  - w
o 1
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(5-12) C
F 

= ~~~ {(a+~0)v + + ~~V + b( ½-a)~~1] C ( )  -

The propulsive force F , using (5—9), is

(5-13) F = 2flpb{(ci+~~)
2 V2 + 2V(a+~ ) [ ( -w

1 +

+ b(~ -a)~~1)C ( ) - h~~~J + [(-wi 
- ~ 1V + b( i~-a)~~1

)C(s)

-

The last squared term is the nonlinear time—dependent contribution and

is neg lec ted hereafter. The first squared term is the propulsive force

on a flat—plate airfoil at incidence in steady flow . The resultant

steady aerodynam ic force should ac t at right angles to the fr ee s tream

- S velocity in potential flow, and this steady propulsive force can be

interpreted physically as the component which tilts the resultant lift

S vector , obtained by summing the pressure distribution at right angles to

the chord , forward to become normal to the airstream .

The propuls ive force can thus be seen to correc t f or the chordwise

component of the lift which is computed normal to the airfoil chord .

The assumption Incorporated into (4—18) that the unsteady circulatory

lif t acts at right angles to the airstream must be discarded and the

force assumed ra ther to be normal to the chord of the airfoil in its

steady—state orientation . The assumed direction of forces is shown in

Fig. 5—3.

In the structure axis system, the loads are
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The loads can now be arranged Into the unit generalized force

fo rmat  of (5—3)  b y Laplace transformation in time , substitution of the

assumed modes as in ( 5 — 2 ) ,  and fo rmat ion  of the generalized for ces fr om

relations such as (4—11). After this work , which is strai ghtforward ,

‘-he elements of the aerodynamic matrix which incorporate the linearized

unsteady propuls ive  fo rce  are

(5—18 ) 
~ j +n , i 

= 2(l_ ç) c t  t5~~

+ (2—L ) - -  H q
~ 

‘
~~~~~~ (l~ .i~~n)

(l~~j~~n)

~j+ ii , i+2n — 2[L~ - - - + A (l_L
~
) 11

1 1 
a

4 n
+ [E S~, — I — -

~~ + ( 2 — L  ) A J  ~ Y q °
‘V S V—m+l

where the  new modal i n t e g r a l s  appear ,

(5-19) y
j V~ 

= 
~~~ 

~~1 
~~ f~

51 
d~

The remainder  of the terms of the aerodynamic  m a t r i x  remain the same

as in (5—3 )

Prior to a c t u a l  cal cul at it-ins a further approx ima t ion is made .

The terms In (5—18) which depend on sums of q are neglected ,

S 
e l im i n a t i n g  the need to compute the . ThIs is equivalent to

assuming that the  l i f t  L In F I g .  5—3 Is aligned with the  z— a x i s  and

that is neglected relative to a in the  l i n e a r  term of ( 5 — 13 ) .

Strictly, this simplif ica tion will alter the results somewhat, hut It

is not expected to change the  o v e r a l l  e f f e c t  of the propulsiv e force
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on s t ab i l i t y  and does simpl i f y  computations . The first order trend of

the e f f e c t  of 100% leading edge suction on stability is the main point

of interest and should not be affected .

The changes made to the aerodynamic matrix are therefore substitu-

tion of the terms

(5-20) 
~j+n,i 

= 

~~
2(1_L

w
)a (i=j)

(i~j) (1sj~~ n)

~j+n,i+2n 
= 2[t~ - - ~~- + A(l_ i

~~
) 1I j j  a 

(1~~ i~~n)

for their counterparts in (5—3).

The program described in Section B includes the option of using

either of these unsteady aerodynamic force sys tems , and a comparison of

their relative effect on stability is made in the next chapter. Except

9
for the — -

~~ term in the second of (5—20), incidentally, the newer
S

system simpl y involves doubling the magnitude of the terms in (5—3)

tha t  are rep laced .
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M = 40 , P = 0.005, = 0 .25 , A 0.1 , S — 0.1, r = 25, a = 0, n 3,

C = 0 , U =- 6.5

ITERATION s DETERMINANT AT s

0 —0.072968 + iO.0582071 0.326xl0
9 
+ iO.1266x10’0

1 —0.078290 + iO.067052 —0.259x10
9 
+ iO.504x10

8

2 —0.079541 + 10.065839 0.106xl0
8 
+ iO.504x10

7

3 —0.079527 + 10.065910 0.l06x10
6 

— iO.l78x10
6

4 —0.079526 + 10.065910 — 0 .281xl0 4 
+ i0.499x104

M = 40 , P = 0.02, ia 
= 0.25, A = 0.1 , S = • 0 . l , T = 25 , Ct = 0.02, n = 2 ,

C = 0 , U = 7

ITERATION S DETERMINANT AT S

0 —0.0055179 + iO.1l96l2 0.261xl0
u 

— iO.253x 10 ’°
1 —0.0014167 + 10.1074866 0.125x10’° + iO.428x10’°
2 0.0005501 + 10.1085285 —0.459xl0

7 
+ iO.l35x 10 9

3 0.0005027 + 10.1084861 —0.129xl06 + iO. 178xl0 6

4 0.0005026 + 10.1084861 J _______________________

TABLE 5.1 Performance of the Determinant Iteration Algorithm for Two
Cases, One Nonlifting Wi th n = 3 and One at Steady Lift
With a = 0.02, n 2
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STEADY—STATE DEFLECTIONS:

_ _ _ _  
n = 2  n 3  n 4

q ° / b 1.97768 2.01496 2.019088

q~~
l
/b 0.022566 0.023221 0 .023274 M 40

q~
2
/b — 0.001453 0.001464 P = 0.005

q 03
/b  — — 0.000271 

~~ 
= 0.25

q 4
/b 0.003170 0.003534 0.00 3594 A = 0.1

q o l
/b -0.0036 3 —0 .000403 —0.000407 S = 0.1

q
0 2

/b  — —0.000044 —0.000046 ‘r 60

q 3
/b — — —0.000007

S 
q~
4 0.0068192 0.0072034 0.0072456 a = 0.01 RAD .

—0.0001112 0.0000129 0.0000303 C = 0

— —0.0000322 —0.0000130 U = 7

q
0 3 

— — —0 .0000103(p
4 

________________ _______________ ______________

ROOT FOUND BY DETERMINANT
ITERATION WITH n = 2: p = 0.03579 + 10.55875

RESULTS OF LINEAR EICENVALUE ANALYSIS FOR n = 2, 3, 4:

n = 2 :  n = 3 :  n 4 :  S

p = .O3S795 + i.55875 p = .O36828 + 1.52903 p = .036486 + i.52309

AMPLITUDE PHASE AMPLITUDET PHASE AMPLITUDE I PHASE
55———— — I - 5 I
~ /b 4.2245 215.400 4.6573 I 217.75° 4.7497 218.17°
_w1 I
q lb 1.2064 _40.510 1.1808 _37~~~53 0 1.1815 —37.07°
_w~, I
q /b — 0.03432 - —18.25° 0.03544 —17.97°
_W

3 I
q /b — — 0.00530 —12.46°

0.083839 - 7.71° 0 .87304  - 8.79° 0.88887 - 9 . 12 °

~ 
1
/h 0.05128 181.23° 0.05146 181.49° 0.050487j 181.93°

V
2 

- 0.009128 I 169.96 0.009314 169.12°
V S] I

q lb — — I 0.002135 165.92°

1.0 0.0° 1.0 0 .0° 1.0 0 .0°
1 0.05780 I -33.85 ° 0 .07738 -30 . 30 ° 0.08213 -29 .93 °

— 
I 

0.02511 p — 1 9 . 7 9 °  0 .02969 —18 .96 °

— I — 1 0.00912 I —22.80°
- --s--- -- - _ _-

~~~~ 

—5---- -- I I --_ _

TABLE ‘~.2 Modal Convergence for Convergent and Divergent Oscillator y
Aeroelastic Modes (see Fig. 6—24(a))
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ROOT FOUND BY DETERMINANT S

ITERATION WITH n = 2: p = —0.216505 + il.632293

RESULTS OF LINEAR EIGENVALUE ANALYSIS FOR n = 2, 3, 4

n = 2 :  n = 3 ’  n = 4 :

_____— p = — .2165053 + 11.6322931 p = — .21485 + 11.59221 p = — .2l564 + il.57794

AMPLITUDE~~~ PHASE AMPLITUDE ’ PHASE PLITU1~~~~~~~AS~~~
I ———-

~~~~~~~~~~~~~~~~~~
_ _ _

~ /b 0.02478 175.84° 0.02627 175.18° 0.025894 1 174.95°
I I p

q /b 0.05039 J 181.31° 0.07554 i 178.03° 0.07883 177.63°

~ /b — I 0.02535 I 181.07° 0.02054 I 178 . 9 90
W

3 I
q /b — p — 0.00047 I 159 .19°

W
4 I I

~ /b 0.14780 $ 160.48° 0.14548 160.42° 0.14364 160.10°v
l I p

~ /b 0 .04973 181.88 ° 0.05680 I 181.47 ° 0.05937 181 .34°
V
2
/b — 0.000618 122.60° 0.000565 I 2 4 2 .3 Y

_ 3 p I I
q /b — — 0.000081 — 6.87°

1.0 0.0° 1.0 I 0.0 ° 1.0 0.0°

q 0.20484 175.75° 0.18586 175.28° 0.18223 I l75 .2-~°

— I 0.05215 176.65° 0.052S2 176.50°

I I
qA. — — 0.01955 177.66°

_________________________ ________________________________________________________________________________________ _____________________________________________________________ _5555 5 _________________

LABLE 5.2 CONCLUDED

109 

55555 5555 - S. --



-‘-5 -

CONFIGURATION:
M , P, ia,A ,S , 7, n

ASSEMB LE IM I
I

s

INITIAL GUESS FOR 
~ 1

_________________ 
SPECIFY FLIGHT

CONDITION : a ,C,U

SOLVE FOR STEADY S

DISPLACEMENTS

L~~
ASSEMB LE [ K ]  J

EVALUATE IQJ ,  THEN
THE DETERMINANT AT :

S (1)~~
(2) ~~+ .001
(3) ~ + 1.001

GRADIENT SEARCH
A LGORITHM MAKES
A NEW ESTIMATE

FOR ~

HAS ~ CONVERGED ?
YES

fl~~~~~~~~
]

SAVE ~ AS
FIRST GUESS

FOR NEX T NO LAST FLIGHT
a , C , U CO lON ?

FIGURE 5—1 Flow Chart for Locating Zeros of (5—8)
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~o51S.Oo1 ,

/ ‘55
55~~•p

-
, A B ‘

~~~

,
/

,
, C

Re (i)

S FIGURE 5—2 Gradient Search Algorithm

F21f
I

F~ / 
F21

FIGURE 5—3 Resolution of Unsteady Airloads Including Leading Edge
Suction into Components F , Fxl zl
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Chapter VI

AEROELASTIC MODES USING AIRLOADS FROM INCOMPRESSIBLE STRIP THEORY

A. The E f f e c t  of Steady Drag on Flutter of a Nonlifting Wing

Before considering steady—state deflections due to lift , a thorough

understanding of the stability behavior of the cantilever wing at zero

steady lift is needed . With w and 
~ 

at zero, the fore—and—aft

bending degree of freedom is dynamically uncoupled from vertical bending

and torsion mot ions , and the sys tem analyzed in Ref. 1 results. In the

zero lift case, then, solutions for stability involve 2n aeroelastic

modes consisting of coupled motions in w
1 

and ; the remaining n

modes represent uncoupled free vibration in each of the assumed modes

in V
1 

. As demonstrated in previous chapters , the f l u t t e r  conditions

obtained by this assumed mode analysis compare favorably with Ref. 1

results over all practical combinations of the parameters M , P ,

A , S , and C . Owing to this good agreement , the results and conclu-

sions of Ref. 1 apply here as well , yet the assumed mode solution method

still is useful in providing additional insight into the flutter behavior

of the nonlifting wing.

The parameters M , i
a , A , and S offer no suprising effec t ,

and most importantly here, the nature of their influence is not altered

by the inclusion of drag. The Ref. 1 results indicate that an increase

in the elastic axis — A.C. offset given by A is destablizing, an

increase in the sectional C.G — elastic axis offset given by S is

destabilizing, an increase in the radius of gyration parameter i is

stabilizing, and that the flutter speed is approximately proportional

to the square root of the mass ratio parameter M . Since Ref. 1

- -  5 - S
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establishes that the influence of drag is not sensitive to these four

parameters, more detailed study in this area is not considered here.

The most curious f inding of Ref .  1 involves the e f fect  of C in 
S

conjunction with the aspect—ratio parameter P , which Is the product

of the vertical bending—to—torsion stiffness ratio with the inverse

square of the geometric aspect ratio. The effect of steady drag on

flutter speed is stabilizing for smaller aspect ratios (larger P) but

des tabilizing for larger aspect ratio wings. The reversal of the effect

of drag on flutter occurs near P = 0.01 , and the behavior in this

ne ighborhood, including flutter mode shapes , appears to be quite

interesting. No conclusions regarding physical causes of this phenomenon

were made in Ref. 1, however.

Figure 6—1 is a reproduction from Ref. 1, showing the effect of

drag on flutter speed as a function of P for intermediate values of

M , I , A , and S . Numbers in parentheses on the abscissa give the

true aspec t ra tio for a typical value of the ratio El /Gi
d 

= 1.6

Clearly wings of practical interest include the region within which the

effect of drag on flutter appears to be most interesting.

To help gain a better physical understanding of the behavior near

P = 0.01 , flutter solutions for this same example have been found via

the simple harmonic method of Chapter IV, over the range 0.002 < P < 0.02.

Results appear in Fig. 6—2 that show flutter speeds and flutter mode

shape amplitudes and phase relations as functions of P . Since a

finite chordwise to vertical bending stiffness ratio T must be

specified , and the effect of drag on flutter depends on T as in

Fig. 4—15 the value ‘r = 50 was used to allow adequately for the
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-~~ ~ behavior inherent in the  Re f .  1 formulation. Three assumed

modes in each degree of freedom are used .

The flut ter speeds in Fig. 6—2a closely match the Fig. 6—1 results.

The flutter mode shapes include participation by the three generalized

displacements q~ , q , and q , with the remaining assumed modes
1 2

contributing negligibly to the motions . In Fig. 6-2b the amplitude and

phase of the two assumed bending modes at flutter are shown for unit

magnitude and zero phase angle of the first assumed torsion mode.

S It can be seen tha t  for  any C the sharp  drop in f l u tt e r  speed

that comes with decreasing P is accompanied by a sudden change in the

flutter mode shape . The amplit udes of the  two bending  modes merge , and

the second bending mode undergoes a large phase shift. Further decrease

in P gives a gradual separation of the assumed bending mode amplitudes

with  the fundamental mode again becoming dominant .

To help visualize the physical appearance of these flutter mode

shapes , phasor diagrams of the spanwise distribution of bending disp lace— S

ments , f or C = 0.02 , are given in Fig. 6—3 for five values of P

Arrows dep i c t  the  modal generalized displacements from Fig. 6—2 , and

the curves give the relative displacements along the span and their

phase r e fe renced  to . For both P = 0 .02  and P = 0 . 0 0 2  a l l
‘$ 1

s tat ions are nearly in phase and the mode shape is dominated by the

first assumed bending mode . But for the intermediate values of P

where the transition in phase of the second bending mode takes p lace ,

the displacements at different locations along the span can be over 90°

out of phase.

115



The behav ior of flutter modes in this range of P offers the

grea tes t  d iscrepancy found between the r e su l t s  reported in R e f .  1 and

the assumed mode solution , sugges ted by Fig. 2—1. For P < 0.04 in

Ref. 1, collocation at only five spanwise stations was used , and the

mode shapes in bending and torsion were permitted to have spanwise phase

diff erences. It was found , however , that these phase differences never

exceeded a few degrees , in con t ras t  to the results presented here.

P o s s i b ly  the  use of only f i v e  spanwise co l l oca t i on  po in t s  did not  a l l o w

enough f reedom to represent  the flutter mode shape transition found S

using assumed modes. In any case good agreemen t be tween f l utt er speeds S

and t requencies is still observed for the two methods.

Figure 6-~ seems to indicate that the second assumed bending mode

p l ays a significant role in the reversal of the effect of drag on flutter

near p = .01 • which coincides wi th  the  n a t u r a l  f r equency  of t h is  mode

cros s ing  the flutter frequency . Interaction of actual aeroelastic modes

is masked by the  limitations of the solution method , however , wh ich only

:1
t~ives neutrall y stable solutions . In order to better understand these

r e s u l t s , the  Lap lace t ransf orm approach of Chap ter V is used to a l low

tracing all of the aeroclastic modes in the complex plane for speeds

from zero into the supercrltical range .

Figures  6 — 4 ( a )  — 6—4(h) give root locus diagrams for increasing

speed a t eight representative values of aspect—ratio parameter P

E a c h  locus ori g inates fo r  U = 0 at one of the normal modes of fr ee

vibra tion of the structure , which are easily calculated in terms of the

uncoup led  assumed bending and torsion modes. Zero drag branches are

shown in a l l  of the figures , with b c !  corresponding to C ~ 0 added

where their behavior d i f f e r s  s i g n i f i c a n t l y  from that for zero drag.
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The first two figures represent stubby low—aspect—ratio wings , for

which the strip—theory aerodynamic assumption is certainly inadequate.

Due to the manner in which the Laplace variable p is nondimensionalized ,

the predominantly first torsion normal mode of free vibration remains

essentially fixed on the iw axis near 1.6 on all of these diagrams .

The predominant ly bending normal modes move down the iw axis as P

decreases, since their natural frequencies decrease relative to the

torsion frequencies . In Fig. 6—4(a) the bending branch of the aero—

elastic modes leads to flutter , whereas in Fig. 6—4(b) the torsion

branch eventually becomes unstable. The normal mode having the third

lowest natural frequency, predominantly the second bending assumed mode ,

occurs well  up the i~ axis and o f f  these two diagrams and has n e g l i g i b l e

influence on flutter. These low—aspect—ratio cases show entirely two—

degree—of—freedom behavior and closely resemble the root loctis given

by Edwards (Ref. 11) for a typ ical section in plunge—and—pitch motion

in incompressible flow.

Figures 6—4(c) and 6—4(d) represent values of P just above the

condition where the effect of drag on flutter reverses. Although the

f l u t t e r  phenomenon is still similar to that for larger P , the third

normal mode frequency has now decreased sufficiently to appear on the

diagram , and it produces a branch which does no t lead to flutter for all

values of drag.

According to the flutter curve of Fig. 6—2 , for P = 0.01 the

cases C = 0.02 and C = 0.04 result in decrease of flutter speed

from the zero—drag condition whereas for C = 0.01 it is still increased.

Figure 6—4(e) gives the P = 0.01 root locus, which reveals that the
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.ieroelastic mode emanating fr om the predominantly second bending normal

mode now plays an important role. The next illustration , Fig. 6—4(f)

w i t h  P = 0.007 , gives th is  branch as becoming unstable  for  al l  C

In the final two of these illustrations , with P = 0.005 and 0.002

t he  f l u t t e r  phenomenon appears to be r e tu rn ing  to the type of behavior

seen for small—aspect—ratio wings , with the second bending contribution

assuming a lesser influence. In Fig. 6—4(h) a fourth normal mode , the

t h i r d  bending  mode , has made i ts  appearance but  does not noticeab ly

in f l u e n c e  f l u t t e r .

The n a t u r e  of the  aeroelas t ic  modes on the var ious branches of the

root locus diagrams can be clarified by looking at their mode shapes.

In Fig. 6—5 , phasor diagrams are used to show C 0 mode shapes for

each branch of the .005 locus (Fig. 6—4(g)). At selected speeds both

subcritical and supercritical , the general ized displacements are shown

with the phase angle of taken as zero .

~1
The dependence of dra g ’s effect on flutter upon P is also given 5

for a second configuration having a smaller mass ratio M = 9.4 , more

r e p r e s e n t a t i v e  of ligh t a i rc ra f t and sa ilpianes . Shown in Fig. 6—6 ,

the basic behavior resembles the first configuration , with certain

differences. For examp le , the reduction in flutter speed by drag for

small P is moderate relative to that for the larger mass ratio; this

i~ also seen in the tabulated Ref. 1 results. Also the transition as

P reduces through the 0.01 region is much less severe. Again the

reve rsal coincides wi th the crossing of the sec ond assumed mode frequency

below the flutter frequency. S S

In conclusion , assumed mode results attribute the reversal of the

e f f e c t  of drag  on flutt er speed to the interac t ion of the struc ture ’s

I 
- S
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‘t ’oi~~ n a t u ra l b en d i n g  mode wit h t h e  basic c an t  I I  eve i- w i n g  11 i t t  t e r

mt ’citan I sm involving the first b en d i n g  and f irst t o i-si on modes . ihe

exact  reason t hat drag I iw t e a s~’o the 11 i t t  t er speed f o r  I’ ~I tve  ( i t  I

app ar en t  ‘‘ r esonance ’’ cond it I on  and decr eases  It for smal ler I’ I s  not

CVI dent. in these rt ’  on I t  s , and like many ae t ot ’ I :101 1 c phenomena m:iv not

have :1 imp l i ’ piiv:i I t ’:tl expi anat to~ . I t  (101 5 appear , liowc~’er , th a t ti n ’

dra g I oree  enhanc es t h e  .-o t i p  I I ng t ’ I the :;,s oitd b e n d i n g  mode In to the

I I ut t er ln ’l i av  t o t  and h e r eb y  magn I f  I t ’s I t  s a I i e :tdv iii- esent i~~f t  i ’ et  t~ I 1

f I t i t t i ’ i 5 5 ~~( ’i ’ d

Sin ce t lit ’ Re I . I t ahu I at i’d n’s i i  I t  g I ye a I a ( i i  V cotiip 1 e I t p l c  ( I I  re

of  t l  u t  t el  of  t l ie  non I i t  ( lu g  case  I i i  t h e  p i t ’ : ;is i t -e 01 t t’;idv di  : t g  and

. i t - ,’ not di spit ted b~- c ur r e n t  resti l t • I
5 t i r t  h e r  work  he re In is d I r e c t  ~‘d

toward s  t i i i ’ moi 5e g e n e r a l  c i s c  I nvo l v i  i ig  st  c a t lv  de l  t rm ~~t ions tht i t ’ to I i i

fl . i~l f ee t  of  St  eadv I’,’ I i nu : t t  I o n s  I) ite t o 1, 1  f t

The good a g i t ’e i f l t ’n t  In pre i l  i ct iou ol dv n a m  Ic ot ;th~ I 1 i t  v b et  wt ’eii t h e

t ’it rr i ’uit :111:1 1 vs is  and t he Re I . 1 ce I 1 oca t ion  m et h o d  I or itoh i ii t i ~~ vi ng~
;

w i t  ii a ot ,‘.‘it iv cir:ig t o r e t ’  inchiitli’ iI t i t r i t i  sh es t oitlitl e tic e th a t t lie motia I

SI ’ i i t ’ f l i ( ’  W i l l  he s i t  e s s t  i i i  lot of ~‘a~iv 1 ii t l u g  coiid I t  I on s . The ,‘I I i s t  o f

St  e.i , Iv i i i~ I o i il1:i t i t i t i ~~ di i i ’  to 1 it t Is i i n - o l p o r a  t ed h i t  o t Iii ’ dvti :i i i i l i’

S stab i I i t v :uni I v o l  by ( l i e  same means as ( i t t ’ ~ t e:tdv dr ag  c l i  ‘ct - - -— name l v

S through eo&’fi Ic  l e n t  of t l ie s t I l l  ness mat i I x  det  eim i uied in a S e p i t a t  e

t iot t i I flt’ 1 t• so I U t  I ott tot - t lie ot  i ’ad ’’ — s t - i t  ,‘ t i e I I c e  t I otto . I’ltiis . t l i t ’  i g l t ’ t ’ f l i t ’ i t t

i itd I cat t’:; t int t t lie scheme :1 I low I uig sma I 1 t Inc  d e p e u i t h t ’t i I pe~ t it rha t I 0110

— abt ’tit :1 s t a t  i c  ilet I ~‘ct i t i i t  is work I ng proper Iv. Wlit’n st eadv I I f t  i ng
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the fore— and—aft bending is no longer dynamica l ly  uncoup led.

Coup l ing  in both elastic terms (the stiffness matrix coefficients

con ta in ing  w and ~~~) and aerodynamic coup ling terms (arising from

unsteady aerodynamic force components in the x—direction) now appears

in the fore—and—aft bending dynamic equations. The 3n aeroelastic

modes w i l l  consis t of coupled mo t ions in w
1 

, , and v
1

Three basic wing configurations are selected to illustrate the

effects introduced by stead y— state lifting deformations. Parameters

S 
M , ~~ , A , and S are taken the same as in Fig. 6—i , and aspect ratio

param ete r P is assigned thr ee d i f f e r e nt val ues in order to consider

wings of large , modera te , and low aspect ratio. For large aspect ratio ,

P = 0.005 is chosen to provide a case for which steady drag decreases S

the flutter speed (Fig. 6—1). A moderate aspect ratio examp le wi th

P = 0.02 having an increase in flutter speed due to steady drag, and a

low—aspect—ratio case, P = 0.1 , are also included. For the typ ical

bending—to—torsion stiffness ratio

= 1.6

these examp les correspond to actual retangular planforins having aspect

ratios of 17.89 • 8. 94 , and 4 respectively. The bending stiffness

ratio T now be comes impor tan t , and is given the nominal value 25.

The essen t ia l  f e a t u r e s  of the  f l u t t e r  behavior  encountered when s teady

d e f o r m a t i o n s  enter  can he i l l u s t r a t e d  by u s i n g  these basic configurations

as examples.

h u t’  flutter stability boundary for the moderate—aspect—ra tio examp le

is shown in Fig. 6—7 for C = 0 and C 0.01 ; the  stead y bend in g
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displacement w of the wingtip is the measure of steady lift. An

alternative would be to  show fluttor speeds as a function of ct , but

this is a poor means for comparing curves having different steady drag

and gives no information about the elastic steady deformations . A

better way to indicate the steady fli ght condition would be the total

lift force on the’ deformed wing nond imensionalized , for example as

4E1 b As can be seen in Fig. 6—8 this dimensionless total lift para-

meter , which depends on the steady twist q (y) , varies f or cons tan t

wingtip deflection as C changes for points along the stability

boundary of Fig. 6—7. This is because the drag force alters the rela-

tive ~ and w distributions for the same total steady lift. But
0 0

since this effect is small , and w gives the best indication of the
0

magnitude of the steady equilibrium deflections, this deflection is used

to indicate the steady lift condition. In Fig. 6—7 , the semispan of the

wing  is abou t 9 semichords , and steady deformations well exceeding th~

l imits of t he  modera te  displacement beam theory are therefore shown.

This demonstrates that flutter solutions can be found for  arb it r a r i l y

large steady displacements and that it is a matter of practical engineer-

ing Iudgmen t to recognize when the assumptions made in the derivation

of the equations have been violated .

For C 0 Fig. 6—7 indIca tes that the flutter speed reduces

continuously with increasing steady lift until a maximum reduction of

about 11% is achieved at an excessively large deflection of 4 semichords.

The frequency at flutter reduces monotonfcallv with w ; this effect

is generally observed for all wing configurations.
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S With steady drag included , the situation for the deformed wing is

not as simp le as it is for the a — 0 case. As exhibited by the non—

linear steady deformations shown in Chapter IV, drag can greatly alter

the deformation state associated with a given speed and root angle of

S 
attack. Even more importantly, drag significantly reduces divergence

speeds, possibly to less than the flutter speed. This is revealed i

the stability analysis when the nonlinear steady solution blows up

bef ore dynamic instabilities appear.

In Fi g. 6—7 divergence speeds found by the linear VT d.tsrmjnant

(2-29) are also indicated for several values of C . Results of a

dynamic stability analysis with C — 0.01 also appear. The flutter

speed for  Ct = 0 and C — 0.01 i. the single point on the ordinate

and is grea te r  than the divergence speed for the same drag. During the

search f or a neutrall y stable oscillating condition for the very small

angle of attack Ct 0.001 red. and C 0.01 , the nonlinear steady

displacement solution was sensitive to U in the neighborhood of flutter

owing to the proximity of divergence . For specified larger angles of

attack , the C — 0.01 flutter boundary is found without difficulty.

The sligh t increase in flutter speed due to drag observed for a 0

appears to he preserved in the presence of steady deformations. For

dt’cre.islng a , however, a point is reached as a -. 0 at which the

s teady d i sp lacements  are still nonzero at flutter. For smaller steady

deflections divergence becomes the instability encountered for in c r e a s i n g

speed. For C 0.02, divergence was observed for all lif ting conditions

with no flutter points found .
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As steady deformation increases from zero, the flutter mode shape

undergoes a smooth transition , originating with the same zero lift mode

shapes shown in Fig. 6—2 for P — .02 . For zero drag, the ampli tudes

of modal generalized displacements which contr ibute  s i g n i f i c a n t l y  to

the flutter mode are shown in Fig. 6—9 , normalized to the f i r s t  torsion

mode amplitude. Their phase angles relative to zero phase for q
~W i

appear in Fi g. 6-10. Participa tion by the first chordwise bending mode

-t increases steadily with increasing w , reflecting the increased strength

of the elastic bending—torsion coupling. Vertical bending motions are

increasingly dominated by the first assumed bending mode , and the

contribution of the second torsion assumed mode increases significantl y .

The flutter mode shapes at one steady lifting condition are presented

in Fig. 6—11 in a form giving a clearer physical descrip tion of the

motion . Above the phasor diagram (which contains the information given

in FI g. 6—9 and 6—10) is a sketch of the cyclic path traced in the

x—z plane by wing sections at the wingtip and at midsemispan. Points

S where the first torsion assumed mode is at phase angles of 00 , 900

180 0 
, and 270° are located . These diagrams emphasize the three—degree—

of—freedom nature which flutter can have when steady deflections are

present.

The low—aspec t—ra t io  example (P = 0.1 and ~~ 4) shows only minor

effects upon its flutter characteristics due to steady deformations , as

migh t be ant ic ipated . As given in Fig. 6—12 , even for the extreme

condition a .12 rad. yielding a 1.7 semichord tip deflection at

flutter , there Is only a O.62Z reduction in flutter speed dut’ to lift.

The flutter mode shapes (Fig. 6—12) undergo little change , with a slight
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contribution by q the only new feature . Owing to these unremarkable
1

results , further work centers on the moderate—and—high—aspect—ratio S

examples , where the effects of steady deformations and chordwise forces

are significant and interesting.

For the high—aspect—ratio example with P — 0.005 , the flutter

behavior is quite different when steady deformations enter. Figure

6—13 shows the dependence of flutter speed upon the  steady wingtip

bend ing deflection for two drag cases , C • 0 and 0.01 . The minimum

flutter speed in this case is over 20¼ below its undeflected counterpart ,

but quite interestingly as w -
~~ 0 the stabilit y boundaries do not

S 

converge continuously to their respective zero lift flutter speeds hut

approach l ower points on the ordinate.

The f l utt er mode shapes , Figs. 6—14 , 6—15 , explain this new

behavior. As the steady deflection becomes small , the flutter mode

becomes dominated by the first chordwise bending mode , and as a ~ 0

this tYpe of instabilit y approaches simp le free uncoup led vibration in

this degree of freedom . For moderately large steady deflection the

flutter mode shape closely resembles that for the medium—aspect—ratio

win g, Figs . 6—9 and 6—10.

Flutter mode shapes for two steady—lift conditions are diagrammed

in Fig. t~-i6 using the same technique as in Fig. 6—11. Relative to the

I’ = 0.02 example , this wing shows a greater amount of partici pa t io n in

fore-and—aft bending, and a grea ter cont rib ution f r om the second ver t ical

bend i ng mode . This mode ’s contribution causes the noticeable difference

in the eccentricities of the elli p t ical  paths traced In the x — z p lane

by different wing stations. The phase relationship among q~, ,

“ l 1
and 1~ appears similar in this and other examples .
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The most noticeable effect of steady drag again is its reduction

of the divergence speed . Figure 6—17 gives divergence speeds found by

the linear determinant (2—29) together with zero lift flutter speeds

for increasing steady drag for the moderate— and high—aspect—ratio

cases. Divergence is clearly more impor tan t rela t ive to f l utte r f or

the larger aspect ratio.

S The effect of steady drag on the dynamic behavior (Fig. 6—13)

appears to cause only slight adjustments to the zero drag flutter results

for any steady deflection . The flutter mode shape amplitudes and phase

angles show but small changes for the rather large drag C = 0.01

The flutter speeds fall just below the C 0.01 divergence speed.

The s t ab i l i ty  boundaries in Fig.  6—13 do no t allow fo r structional

damp ing and give no feel for the degree of stab ili ty a t speeds near

f l u t t e r .  To gain a b e t t e r  unders tanding of the type of i n s t a b i l i ty

that has been found with steady deformations , and also define the over-

all aeroelastic behavior , the Laplace transform approach detailed in

Chap ter V is applied to the large— and moderate—aspect—ratio examples .

The true aeroelastic modes are then conveniently traced in the complex

plane at any flight conditions using root locus diagrams . 
S

Before showing the root—locus results , it is interest.nc to see

how stability is suggested by the simple harmonic method with nonzero

S structural damping assumed . The C = 0 stability boundary of Fig. 6—13

is reproduced in Fig. 6—18, to which stability boundaries for three

values of structural damp ing are added. The sizeable increase in

f l u tter speed wi th g hin ts tha t the ins tabi l i ty is no t of severe

nature, and as w becomes sma l l  the predominan t ly fore—and—aft bending
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motion is obviously very lightly damped . For small deflections with

structural damp ing included , there is a change in the flutter mode back

to the basic bending—torsion type encountered for zero si~~dy lift. In

spite of structural damping ’s stabilizing influence , there still exists S

the possibility of a reduction in flutter speed at high load factor

flight conditions.

Root locus diagrams depicting the dynamic stability of the moderate—

and large—aspect—ratio—wing examples with steady deflections appear in

Figs. 6—19 and 6—20 respectively. Dashed lines in these figures show

the zero steady lif t loci of roo ts for increasing speed , which are the

same as the zero drag diagrams of Figs. 6—4(c) and 6—4(g). Solid lines

trace the elas tic modes for selected cons tan t speeds as the angle of

attack a is varied , and originate for a = 0 at nonlifting roots

corresponding to these speeds.

In addition to the normal modes of free vibration involving vertical

bending and torsion , previously seen on the iw axis in Figs. 6—4, the

firs t fore—and—aft bending mode natural frequency now also must be

included. This normal mode remains an uncoupled , undamped aeroelastic

mode at all speeds at a = 0 , but a family of constant speed branches

emanates from this root with steady lift included . Since its natural

frequency w~ is a factor I~ larger than the first vertical bending
1

assumed mode frequency w , th is  new normal mode lies on the iw
1

axis approximately at a multiple /~ of the lowest normal mode frequency .

This falls above the zero—lift flutter frequency for the moderate

aspect ratio wing, but less than it in the high—aspect—ratio example.

1 2f
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A general feature of Fig . 6—19 and 6—20 is that as steady l i f t

increases from zero, one group of constant—speed branches tends to

stabilize and rapidly increase in frequency , whereas another lower

frequency family of root paths reduces in stability and decreases in

frequency. This latter group is responsible for the stability boundaries

of Figs . 6-7 and 6—13. In the high—aspect—ratio example, they originate

from the lowest chordwise bending normal mode, but for the moderate—

aspect—ratio wing they originate on the zero—lift torsion branch of the ~
- 

-
~

root locus. The constant—speed branches which originate on the first

and second vertical bending zero lift paths , for both examples , do not

show much sensitivity to steady deflections.

To illustrate more clearly the role played by the chordwise bending

upon stability , the large—aspect—ratio example is modified by increasing

the bending—stiffness ratio T from 25 to 60. This raises the dimension— 
S

less natural frequency of the first chordwise bending mode from 0.6216

to 0.9629, which is greater than the zero lift bending—torsion flutter

frequency of 0.8921. The stability boundary calculated for this modified

example appears in Fig. 6—21 and the associated flutter modes are

presented in Figs. 6—22 and 6—23. The root locus obtained via the

Laplace transform method appears in Fig. 6—24(a) and the true stability

of constant—speed branches yielding instability is better depicted in

6—24(b) using the damping ratio ?

The discontinuity in the stability boundary is only a consequence

of the solution procedure of Chapter IV and covers a region where solu-

tions that do exist could not be determined. It is due to an interaction

of the predominantly second bending, stable aeroelastic mode with the
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& O O t S  that yield instability . The simple harmonic solution method

involves fixing the angle of attack a and searching for the neutrally
- ~~~~~~~~~~

stable l if ti ng condi t ion whose speed ma tches the calcula ted f l u tter

speed . In Fig. 6—21 , the gap in the curve falls between points found

for a = .0095 and .01 rad.

For all points on the left segment of the stability boundary, the

s imple harmonic so lu t ion  y ielded an addi tional highly damp ed ei genvalue

whose frequency was slightly below the flutter frequency. On the righ t

portion its frequency was above the flutter frequency . From the root—

locus diagram (Fig. 6—24(a)) this highly damped eigenvalue can be

identified as the predominantly second vertical bending aeroelastic

mode , and the discontinuous behavior in Fig.  6—21 coincides wi th  the

crossing of f r equencies as the downward moving cons tan t speed loci

associated w i t h  f l u t t e r  pass the  stable second bending aeroelastic mode

f requency.  By correlation with the sec~ ion VI—A discussion of the effect

~ f P and c on f lu tter , the general e f f e c t of the second bendi ng mode

appears to be des t ab i l i z ing  when its f requency  is just below that of

flut ter , and stabilizing when i ts f requency  is jus t above .

The fl utter mode shapes (Fig. 6—22 , 6—23) reflec t an inLeresting

transition as flutter frequency drops below the second bending aero—

elastic mode frequency for increasing w . To the l e f t  of the

discontinuity the mode shapes resemble the zero—lift large_aspect_ra tio

flutter behavior , to which they converge as a -
~~ 0 . For large :- w

though, the modes closely resemble flutter mode shapes for the T = 25 
—

case (Figs. 6—14 , 6—15) which in turn resemble mode shapes for the

moderate—aspect—ratio example. This similarity is most eviden t in q
W 2

and q~ .
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In Fig. 6—25 the flutter mode shapes are diagrammed for two lifting

conditions to assist physical visualization of the motion . The larger S

steady deflection illustration is similar to those given in Fig. 6—16.

But the  smal ler  s teady deformat ion  mode shape , with its large contribu-

tion by the second assumed bending mode , has the wingt ip rotating in a

clockwise direction about its elliptical path for a counterclockwise

motion at midsemispan . In spi te  of the relatively small steady deflec—

tion (a deflect ion of 1.226 setnlchords at the w i n g t i p  for  a semispan of

roughly 19 semichords)  the  motion is quite three—dimensional , ind ica ting

a sig n i f i c a n t  i ne r t i a l  c o n t r i b u t i o n  to f l u t t e r  in f o r e — a n d — a f t  bending.

The three root—locus diagrams (Figs. 6—19 , 6—20 , and 6— 24 )  exhibit

the basic e f f e c t which steady deflec tions have upon dynamic stability

when incompressible strip—theory airloads are used. The basic zero—

steady—lift bending—torsion flutter root together with the first fore—

and—af t assumed mode produce a pair of constant—speed branches , one of

which rap idl y stabilizes and increases in freq uency wh ile the other

decreases in frequency and becomes unstable for speeds below the a = 0

flutter speed . These latter aeroelastic modes are lightly damped , and - S
generally the onset of flutter at constant speed for increasing steady

deflections would not be as severe as for that encountered with increasing

speed . The reduction of flutter speed with steady deformations has been

noted to be greatest when the first fore—and—aft natural frequency is

near to the basic bending—torsion flutter frequency .

A better comprehension of the various aeroelastic modes comes from S

inspecting mode shapes at both subcritical and supercritical conditions.

In Fig. 6—26, mode shapes for selected points along the U = 6 and 7

.T1 
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branches in Fig. 6—19, the moderate—aspect—ratio example , are shown i n

phasor form . Likewise  fo r  the h i g h — a s p e c t — r a t i o  wing having T = 60

Fig. 6—27 presents mode shapes f o r  c e r t a i n  stead y d e f l e c t i o n s  a long  the

U = 6 and 7 paths from Fig. 6—24. These mode shapes disclose that

the branches  which  s t a b i l i z e  and Increase in frequenc~- consist largely

of motion in the first assumed torsion mode , having  a small  q

contribution locked in a characteristi c p~’ase relationshi p with q~ of

near I ~tJ °. The branches  p r o d u c i n g  in s t a b  i i i  t i e s , f u r t h e r m o r e , have q

near lv in phase with q ~ and give the previously shown flutter mode

shapes as they cross the i~ axis. Mode shapes (Fig. 6—27) for the

essential lv second bending a~’roe1ast i c modes show the  dominance of the

second assumed vertical bending mode in this branch , which remain nearly

f i x e d  in the  comp lex p lane  at a frequency close to the second assumed

bending mode natural frequency.

Th e ro le  of the  b e n d i n g — s t i f f n e s s  ra t io I in f l u tter of l i f t in g

w i ngs  is next examined. Figures 6—28 and 6—29 give flutter speeds and

frequencies found for the same moderate—aspect—ratio example used earlier

compared with solutions fo r  d i f f e r e n t  values of T . For T 12 the

dimensionless n a t u r a l  f r e q u e n c y  of the first chordwise bending mode is

0.86124, which is only slightl y higher than the zero—lift flutter

f r e q u e n c y  of 0 . 8 3 1 2 , and i t s  s t a b i l i t y  boundary shows the most mark ed

decrease  i n  f l u t t e r  speed as w increases from zero . The other
0

extreme . I = 1000 , has a dimensionless natural frequency in  chordwise

bending of 7.862 , vet some decrease in flutter speed still occurs.

Elastic deformat ion in hendin~ about the ma jor pr in c ipal ax is of the

a I rf oi I cross  S i c  t Ion sh ’ul d be v i r t u a l ly  suppressed and all fore—and—aft

130 

- - -~~ ~~ -~~ -~~--~~: —v -v~~ - -  ~~~~~~~~~~~ 
____________________



-- --— v ’--— -‘- -- --‘--- - —-5-.- - - 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - .. -- S

~~~~~~ ‘ * S S

motion connected with vertical bending—torsion elastic coupling. Calcu—

la tions are imprac t ica l  for  larger  I since numer ical pr oblems begin

to appear , such as conver gen ce d i f f icul ties wi th the nonlinear s teady

deflection iterative solution.

The uniform decrease in flutter frequencies as T is decreased

reflects the additional inertia from the larger lore—and—aft motions

brough t about by the reduced elastic stiffness in bending about the

airf oil maj or pr inc ipal axis. Decreasing flutter frequencies for

increasing steady deformations likewise should be due in part to the

increasing contribution of q , although the increase in the relative
1

par ticipation of q is also a factor.
1

In Fig. 6—30 the  s t a b i l i ty  boundar ies  shown earlier for the large—

aspec t—ratio example with I = 25 and 60 are compared ilong with

curves having T = 10, 40 , and 200. The appearance is complicated by

the interaction of the flutter modes with the predominantly second

ver tical bend ing aeroel ast ic mode as discussed earl ier , and by fore—and—

aft bending natural frequencies sufficiently low to cause convergence

as a -
~ 0 to speeds below the  t rue  n o n l i f t i n g  f l u t t e r  speed.

For bo th T = 200 and 60 the f l utter freq uen cies descend thro ugh

the range of the second vertical bending mode frequency as w is

increased , causing the discont inuous  s t a b i l i ty  boundar ie s .  The f l u t t e r

frequencies (Fig. 6—31) reflec t the role of this second bending  mode ,

whose dimensionless natural frequency is 0.77904 and (as already shown)

a stable aeroelastic mode with approximately this frequency exists at

flutter. As mentioned in discussing the I = 60 res ul ts, these curves

are ac tua l ly  con t in uous , but the simple harmonic solution procedure

could not produce results within the gaps .
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For the I = 40 , 25 , and 10 cases , stability boundaries converge

to f ree  v i b r a t i o n  in the firs t fore—and—aft mode as a -
~ 0 ; their

frequency curves converge to the respective natural frequencies of this

mode . In the case T 40 , t h i s  f requency  is 0.7862 , quite clo~~ to

the second vertical bending assumed mode natural frequency 0. 77904.

This near resonance caused d i f f i c u l ty  in prec ise l y l o c a t i n g  the  neutral

s t a b i l i ty  curves fo r  smal l  w , as the damp ing became extremely smal l ;

ot  course t h i s  t r o u b l e  is un impor t an t  s ince even smal l  s t r u c t u r a l  damping

would  ra ise  f l u t t e r  speeds considerab ly here .

The s t i f f n e s s  in chordwise  bending  is thus a f a c t o r  in the  f l u t t e r

of l i f t i n g  c a n t i l e v e r  wings . Although stability is most adversely

a f f e c t e d  fo r  w near the  z e r o — l i f t  f l u t t e r  f r equency , th is  e f f e c tv i
appears over  a wide range of T . H i g h e r — a s p e c t — r a t i o — w i n g s  a p p ac en t lv  S

exper ience  a g r e a t e r  decrease  in f l u t t e r  speed w i t h  steady d e f or m a t i o n~~, H
g iven t h a t  ~ is s u f f i c i e n t ly  near the a = 0 f l u t t e r  f r e q u e n cy .v i 

- -

The mass r a t i o  M is the  o n ly  parameter  which  can change for  a

s p e c i f i c  w ing ,  as i t  depends upon altitude. In Fig.  6— 32 the dependence

of b o t h  f l u t t e r  and d ivergence  speeds on H for  the  mode ra t e—aspec t—

r a t i o  examp le  appears for  the  comp lete range of mass r a t ios  of p r a c t i c a l

i n t e r e s t .  Divergence speeds for  several  values of s t eady  drag toge the r

w i t h  z e r o — l i f t  f l u t t e r  speeds fo r  C = 0 and 0.01 are compared.  In

a d d i t io n  zero drag  f l u t t e r  speeds fo r  s tead y l i f t  giving

= 1 * 3

are shown for M = 10 , 40 , and 100 . This same information is

132

— . 
~~~~~~~~

— - ~~~~~~~~~~



- -5~~~ -5~ -5—~~~~~~~ __..~ - ‘5’ Wfl

dep icted iii Fig. 6— 33 for t he  large—as pe ct—r atio example except wlt igt I

de t lee t I o n s  o t 2 and 4 semI chords a r~-

Diverg ence speeds for al I d r a g .  va I u t ’s v - t r y  ex a c t  lv as t~ l , -~~~~

bc seen f ron t he d i v e r g e n ce  t i et  c m l  n an t  ( 2 — 2 ~~) . wh ri- i - H ,- i p p i ’ .i  mc o n l y

as a produc t  with he Inverse square of d i v e r g . ’n i u  sp i ed.  liii- ( ‘ = 0

d i ver g e n c e  speeds for these two ex ;lmp 1 es are I d e n t  i c a l  , h u t  U 1) d c c i i  c t -S

more rap i d lv with C for t h e  it Iglier aspect rat 10 .

Fo r mass rat ios above about S . noul  If t i ng 11 ut t em speeds beI ta ~- -

approx imatel y as . A m inimum In flutter speed is found n - i  r M 5 .

wh I th a rap id ;l svmp t  ot Ic r i se  to in  I in it v fo 1 l o w I n g  a fii rt t i e r  d

In N . Tb Is re flect s we I I known result s I o i- I ncompr esc  l b  I i’ f 1 ow Re I .

page 247) . A p1- act I c;i I app I i ca t  ion  fo i -  mass r a t  I os stiff (i ’ i t - n t  I v  cm;1 I I

to be t lice r e t  ( c a t  l v  I ree f ron t  ii itt t t ’ r Is I he ci ;tb l i l t  \‘ oi l ivd r o t  i I s

used i n  h I glt—s  peed ma m i n e  t m :ins go r tat ion . 1) 1 vt’ rg.enct’ won I d be t i t  e i v pe

of I nstab I I It v e n c o u n t e re d .  Tb i s  eoti c 1 its ion emp l ias  I ;‘cc t h e  imp o i t  a nt i -

of ii 1 owl tig t o t st eid ~- d rig since I t s ci feet on di vu ’ r g .u ’ni - i ’ I s p ropor - — -
S

i o i i a  l i v  t h e  Sant e t o m  any  mass r a t  lo  - 111( 1 t Iti ’ ~lt ’ctu - -isi ’ of di \ c i g i t i c e  spe ed

wi th C eati  be coils I der: ib 1 e -

1) 1 ~‘t -r gence  i s  mc me I t n p o r t T a n  I me I t t  I I ye t o  h u t  t em t or nine I- il t 0 5

a r o u n d  10 litt i t 101-  lii glie i- mass rat I i ~s i i i  i s  Ind icates a c. r e a t  e m I I k~’ I (hood

of 1 I gli a I ru — rn ft ;intl sail p1 tines i xpi - ml cite I ng dl ~ e r gu - Oct  . ( i i  c i i i  I t  ( O t t

o f d lvi- rgi-l1 cc sp eeds I or  a 11 I gli— s-rIo rm ;in ci ’ s -i 1 1 p1 ane ppc :I is  - IS a I 1k c i  V

app I I  c i t  Ion in wit I eh :11 I owance f o r  ci  e ; id v  u r i g  i’ t~ let - I s would be I-s I reab Ii - .

The e h f c c t  el ct t ’aulv uli t i ’m - i t  i on  on t I itt I i -r ap p e I t - ~ in s cn s  It I y e t o

H . For equln 1 t 1 p di - fi eel ions , i 1~ . r e ulitu -es b~ abou t  I lie s ins- pI- o p o l t  l u S t

at each o I t lit’ i i i  ree mass rat b c  in t lie I so t~ I gn res . I - ‘i i iii - Ii I — - t n  l’ u - -t —

rat Ic w in g , these ile t l et -I i ’d I liii l e t  c p - i ’ds co r i i - t t p o n d  t o I li t . u i - i ’ ~ - l i s t  I c  S
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The e f f e c t  of changes In the remaining  parameters  A , S , and

has also been investi ga ted for  the steady deformed case , hu t no new

interesting behavior was found. Their influence at zero lift , as . S

tabulated in Ref. 1 , is carried over into the deflected flutter behavior.

Stability boundaries and flutter mode shapes for increasing steady lift

show the same alterations of the basic f l u t t e r  phenomenon as is demon-

s t r a t ed  by the  examples  used here .

To c l a r i fy  t h e  s t rong i n f l u e n c e  which  s teady chordwise  loads can

have upon divergence , part icul a n y  for hi gh aspect r a t i o s , the  dependence

of U D upon C as aspect  r a t i o  pa rame te r  P is var ted appears in

Fig. 6—34 . The corresponding zero—Il ft flutter speeds for tlti s

c o n f i g u r a t i o n  ( F i g .  6 — i )  can he compared d i r t - i ’ t 1 y~ Unques t I onab lv , for

h i g h e r  aspect  rat  ios (P ~ 0. 01) drag  forc es tvp i c a l  1 v encounter ed  in

fligh t (I.e • , C = 0. 002 S) can cause divergence to become no less

important for flight s ; i f c t v  than primary b e n d i n g — t o r s i o n  f l u t t e r .

C. Effect of Unsteady Lead i ng- Ed’ uct ton Forces f rom Two Dimens iona l  ‘
~

Incomp~~~ssI  b le  Flow

S u b s t i t u t i n g  the  terms I n  ( 5 — 2 0 )  for t h e i r  c o u n t e r p a r t s  in the  aero—

d\’tlamic mat r lx  (
~~

— 3) a l l o w s  In cl u s ion  of t h e  l i nea r i z e d  uns teady  chord —

wise fo r u -es a r i s i n g  f rom Incompres sib l e  p o t en t i a l  s - t r ip thea rv as

i le scr ihed  In Chap ter  V.  Th i s  e f f e c t  is present on l \- fo r  t ~ ü ~tnd

w i l l  grow as angIe of a t t a c k  is inc r e tu se d  . The m l  t Ia I trend of stability

as ~t inc r e t i se s  f ram zero shou l d  be unchanged front  the resu I ts a I ready

(Il scu ssed , hut  a t  it I ghe r  s t eady  I I f t  lug con d i t i o n s  l ea d i n g  edge suct  ion

should  have a not I cciili le Influence •
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Figure 6—35 displays how allowance for the linearized unsteady

propulsive force affects the destabilizing , constant speed , increasing

steady lift branches of the root locus in Fig. 6—19 , which is the

moderate—aspect—ratio—wing example. For this case a tip deflection of

just one sentichord is a very large deformation assuming a conventional

bending—to—torsion stiffness ratio EI /GI
d , since the semispan would

be about 9 semlchords . Thus larger deflections shown are only of

academic interest , since they exceed in practice the limits imposed by

several underlying assumptions .

Figure 6—36 recasts the Fig. 6—35 information into a better form

for inferring stability ; the damping ratio of the same root branches is-

plotted for wingtip deflection . Stability is- slightly increased when

leading-edge suction is- added , but for practical deformations its effect

is really not too significant. A stability characteristic of deformed

wings, also evident in the format of Fig. 6—36 , is the reduced severity

of flutter onset with increasing speed at constant w0 for higher load

factors.

Figure 6—37 gives the manner in which the root locus for the high—

aspect—ratio example (Figure 6—20) is altered by allowing for linearized

unsteady suction forces. Shown is the destabilizing family of constant—

speed branches associated with the first fore—and—aft bending normal

mode . Again true stability with steady wingtip deflection is also

shown (F ig .  6—38). Also added are the constant—speed branches which

stabilize and increase in frequency as steady deformations increase .

Once again the unsteady suction force has a slightly stabilizing

influence. Given the saute ratio EI
X
/GI

d , this example has twice the
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span in semichords of that for the moderate—aspect—ratio example , hence

larger wingtip deflections in seinichords can be tolerated. After

allowing for this factor , the unsteady chordwise potential forces- do

not appear to have any greater influence on stability for the larger

aspect ratio.

Figure 6—39 shows how stab i l i ty o f the modified high—aspect—ratio

S examp le (having T = 60 , presented in Fig. 6—24) depends on steady

deformations and on the linearized unsteady propulsive force. Comparison

with Fig. 6—38 shows a similar effect due to leading—edge suction , but

steady deformations definitely have a stronger and more itmuediate

destabilizing effect for the stiffer chordwise bending case. This is

due to the proximit-v of the fore—and—aft bending normal mode frequency

to the zero—lift bending—torsion flutter frequency.

inclusion of the linearized unsteady leading—edge suction terms

derived in Section D of Chapter V is thus found to he stabilizing for

deformed wings. Aeroelastic modes involving a primary contribution by

the first chordwise bending mode appear to be most a f f e c t e d  by these

terms . With the i r  inclusion , p o t e n t i a l  f l a w  s t r ip  theory has- been

f u l l y exp lo i ted  for this problem , anti further improvement in the aero-

dynamics- involves the compressible three—dimensional loads of Chapter

VII .

D. Two Practical Exai~ples

The manner in which chordwlse forces- and steady def o r m a t i o ns

inf luence  the aeroelas tic  s t a b i l i ty  of can t i l ever  wings has thus  t a r

been i l l u s t r a t e d  by means of idealized examples. After one has identI-

fied the fundamental effects , it I s -  i n s t r u c t i v e  to ap p ly  the  same
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solution techniques to typical designs. Sailpianes, having large

aspect ratios, low mass ratio, and low operating speeds (which permit

the use of incompressible aerodynamics), are a logical choice for

practical examples. Accordingly, two existing sailplanes are modeled

within the approximations imposed by the assumption of uniform spanwise

mass and stiffness properties and strip theory airloads. Their stability

is studied using the same techniques applied before .

The first example is modeled from information given about the

Slingsby Dart h R  in Ref. 15, as summarized in Table 6.1. The approach

taken in determining the wing stiffnesses , in lieu of looking at wing

construction details, was to use photographs in Ref. 15 , from which tip

deflection and twist at a load factor of 4 could be measured . The

stiffness El so obtained is clearly larger than would be expected

for the weight and type of construction ; this inaccuracy is due to the

uniform stiffness restriction, the rectangular planform , and strip theory

steady airloads. The torsion stiffness GId is more reasonable . The

ratio

El
= 4.41

G

turns out impractically large. This number leads to a larger value of

P than would be expected , which causes bending natural frequencies to
S 

be larger relative to torsion natural frequencies than would probably

occur on the actual vehicle. It can be added that , had GI
d 

been

increased to compensate for the seemingly excessive El , then the

flutter speeds would have been absurdly high. Since wing construction

S details were not available, typical values for the parameters A , S.
S 

i~ , and 1 were simply assigned .
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A d i f f e r e n t philosophy was app lied when modelling the second

vehicle , the Gemini two—p lace high performance sailplane detailed in

Ref. 16. With construction details of the metal wing structure described

in Ref. 16, it was possible to assign reasonably accurate values to all

six of the dimensionless parameters from a diagram of the average wing

cross s~ ction (Fig. 6—40). The pertinent details of modeling the

Gemini are listed in Table 6—2.

One notable result is a much lower bending stiffness El than
x

for the Dart l7R. This result will compromise the static deflection—

load factor relationship but should favor the dynamic modeling. The

considerable d i f f erence in bending st i f fnesses  be tween the two examples

Is revealed in Fig. 6—41, which shows how the true load factor (found

using the respective aircraft gross weights) varies with steady vertical

tip deflection at speeds near the expected flutter speeds. The poor

static modeling of the Gemini should not adversely affect its flutter

resu l ts, however , ti p defl ection rather titan load factor should he used

to measure the amount of steady lift.

The mass per unit span of the Gemini wing was taken to be the

average for the outer two—thirds of the semis-pan, so as- better to model

it d y n a m i c a l ly .  The mass rat io—— over twice that for the Dart 17R——

reflects the heavier construction needed for a two—place vehicle and

the smaller average semichord . This design (Ref. 16) intentionally

has a higher  wing l oading to optimze the glide slope , with thermalling

performance improved using full— span flaps . The chordwise bending

stiffness- was conservatively estimated yet still yielded a quite low

value of r = 5 . The low EI /GI
~ 

ratio, together with the very large
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aspect ratio, result in the extremely small P = 0 .00128  . This wing

thus is an extreme case in the context of the examples studied earlier.

The effect of steady drag on divergence speeds and nonlifting

flutter speeds is shown in Fig. 6—42 for the Dart 17R example and in

Fig. 6—43 for the Gemini. For both , the divergence speed drops below

the zero lift flutter speed at drag values which can be realistically

expected in flight. The excessively large P of the Dart 17R model

moderates the drop in its divergence speed due to drag. For flutter 
S

only a slight dependence of speed on C is found. On the Gemini , in

fact, the C = 0.02 flutter speed is only 0.28% less that for C = 0

Its larger S tends to lower the flutter speed relative to divergence .

Figure 6—44 depicts the stability boundary as affected by steady

wingtip deflection for the Dart l7R. The associated flutter mode shape

amplitudes and phase relations appear in Figs. 6—45(a), (b). The

coupling effect between the first fore—and—aft bending mode and the

primary zero—lif t bending—torsion flutter mechanism appears to be

responsible for a decrease in flutter speed with lift , as in earlier

examples. The corresponding root locus diagram (Fig. 6—46) reveals that

the first chordwise bending natural frequency by coincidence happened

to fall almost exactly on the zero lift flutter frequency. This

phenomenon causes the pronounced drop in flutter speed for small deflec—

tions seen in Fig. 6—44. Inclusion of the unsteady propulsive force is

slightly stabilizing at large deflections , as in previous cases.

A parallel analysis of the Gemini example , given by Figs . 6—47,

6—48, and 6—49, yields a very different response to steady deflections .

Flutter speed decreases only slightly at representative tip displace—

ments, and the mode shape contributions front 
~~ , q , and show

1 2 1

139

L



~- ---~~—-~~~-——- -__.~_==_=•__i:. 
— -

~~
- -

~
-- — —

~~~ 
— — - -:;: -~~ 

—
~~~~

--—-
~~

-
~‘-~~-- —-- — -- ,— —‘

I,

almost no sensitivity to w . The chordwise bending contribution

suggests the cause, made clear in the root locus diagram. The combina—

tion of a very small P and small T produces a fundamental fore—and—aft

bending natural frequency which is much smaller relative to the zero

lift flutter frequency than in any example yet treated. Furthermore,

the second chordwise frequency drops to near the flutter frequency. S

This second mode (rather than the fundamental) participates in flutter

of the deformed wing, yet it is not as strongly coupled elastically with

the first vertical bending and torsion modes . The aeroelastic—mode

branches associated with the first chordwise bending mode no longer

play an important role in st~oility with steady deformations. Indeed

it has degenerated into a virtually uncoupled , neutrally damped fore—and—

aft vibration. The linearized effect of unsteady leading—edge suction

on this type of flutter is negligible. S

Evidently, for extreme cases such as the Gemini model with a fore—

and—aft bending frequency much lower than the zero—lift bending—torsion

flutter frequency , the lowest chordwise mode will not participate strongly

in flutter. The low— f requen~y root branches associated with it give no

cause for concern. Before this calculation is accepted as a definitive

flutter analysis of an existing sailplane, however , the cantilever root

boundary conditions must especially be recalled. While these results

do offer insight into synunetric flutter of the actual vehicle , the

possibility of anti—symmetric motions involving fuselage roll and yaw

is entirely suppressed. For the Gemini in particular , there remains

the likelihood that anti—symmetric vertical and fore—and—aft bending

modes may couple to produce a different type of flutter—— possibly one

140 

_ _ _ _ _ _



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - —-~-~~r’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

with a greater sensitivity to steady deformations. Although the results

here are insensitive to both steady deflections and to chordwise forces ,

steady drag unquestionably plays a critical part in divergence.
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DART h R  SPECIFICATIONS (REF. 15): 
-

SPAN 55.8 ft.

AREA 149 ft
2

ASPECT RATIO 20.9

GROSS WEIGHT 800 lb.

ASSUMPTIONS:

WING WEIGHT 200 lb => m — 0 .1242  
SlUg

AVG. SEMICHORD 1.33 ft.

FROM REF. 15 PHOTOGRAPHS:

(w
o)TIp 

= 3 ft. at 4g => El 1,500,000 lb ft
2

~~O~TIP = 1.5° at 4g > GI
d 

340,000 lb ft2

FROM THIS INFORMATION ONE CAN SPECIFY

P 0.01 M 9.4 (sea level)

ASSUME THE REMAINING PARAMETERS

s— 0 . l

A = 0.1 t 25.

EXPRESS SPEED V IN VF./SEC. IN TERMS OF U

U = -
~~ ~~~~~~~~ 

V = 0.008432 V

LOAD FACTOR AT SEA LEVEL:

N - 
4llpV2b~ (a + 

~~~~l) 
q~~~

TABLE 6.1 ModelIng of the Dart 17R Wing
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GEMINI SPECIFICATIONS (REF. 16)

SPAN 60.5 ft.

AREA 124 ft2

ASPECT RATIO 29.4

GROSS WEIGHT 1065 lb.

TOTAL WING WEIGHT 400 lb.

WEIGHT OF OUTER
20 FT. - 110 lb. => m = 0.1708

ASSUME b = 1.00 ft.

PROPERTIES ESTIMATED FROM THE TYPICAL SECTION (Fig. 6-40)

El 444 ,900 lb—ft2

GI
d 402,400 lb—ft

2

El 2,179,000 lb—ft
2

J 0.04697 slug—ft.

a —0.4

5e~
m 0.2322 ft.

RESULT ING DIMENSIONLESS PARAMETERS

M = 22.9 A = O . l

P = 0.00128 S = 0.23 ‘1
i = 0.275 T 5
a

EXPRESS SPEED V IN FT./SEC. IN TERMS OF U

U = ~~~/~~
i V=0.Ol0335 V

TABLE 6.2 Modeling of the Gemini Wing

I.
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10.

C= .04

.02
0.

h f

6.

4. - 
4

- 

M - 4 0 .

2. - A . 1

s = .1

I u i  I I i l l  I I i i i
.001 .01 .1 1.
[40.] [12.65 ] [4.] [1.265]

S 
[Ia)

FIGURE 6—i Dependence of Flutter Speed on C and P , Ref. 1 Solution
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- M = 4 0. 
C

04

~~ .25
A = .1
s = .i / .02

8. - A_
~

__ _
.01
0.

7. -

6. -

0. I I S

0. .005 .01 .01 5 .02

P
1.6 -

1 2

FIGURE 6—2(a)  Flutter Speeds , Frequencies , and flod e Shapes f or
Different C as P Varies, Modal Solution of the
Fig. 6—1 Configuration
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Chapter VII

FLUTTER VELOCITY USING AIRLOADS FROM THREE-DIMENSIONAL
SUBSONIC AERODYN AMIC THEORY

A. Inclusion of Three—Dimensional Airloads

The influence of steady deformations and chordwise forces upon

dynamic stability of the uniform cantilever wing has been examined In

Chapter VI using lifting airloads predicted by incompressible steady

and unsteady strip—theory . This ar-proximate modeling

of the aerodynamic loads made possible their convenient numerical compu-

tation for any convergent, neutral, or divergent oscillations of interest.

As a result, the iterative solution schemes of Chapters IV and V could

be developed and a variety of wing configurations could be analyzed

efficiently.

The accuracy with which the incompressible strip theory results

approximate the three—dimensional compressible flow situation is next

explored by extension to subsonic three—dimensional lifting airloads.

The simple harmonic flutter solution method described in Chapter IV is

accordingly modified to use subsonic three—dimensional steady and

oscillating unsteady aerodynamic loads calculated separately by the

computer program written by Rowe, et al. (Ref. 18). Results are then

found which demonstrate that the phenomena discussed in Chapter VI

still occur after three—dimensional aerodynamics are introduced. The

role of unsteady potential chordwise loads in flutter is investigated

as is the effect of compressibility. Since the use of externally

computed air loads requires a more cumbersome solution method , only

enough results are sought to provide direct comparison with the incompres-

sible strip—theory calculations.
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The Rowe computer program solves the pressure—downwash integral

equation (Ref. 24) for compressible flow about a steady or oscillating

planform. The kinematic downwash boundary condition for each structural

mode is enforced by collocation, at a set of user—specified points, of

the downwash distributions associated with an assumed series of pressure

functioos. For this application seven collocation chords are specified

having five collocation points per chord. Six elastic structural modes

are input—— three in vertical bending and three in torsion. The three

torsion modes are defined for A = .1 (lateral displacements depend on

elastic axis location). A thorough description of the theoretical

aspects of the subsonic kernel function program is provided in Ref. 18,

and the programming details are documented in Ref. 19. Its capability

for modeling trailing— and leading—edge control surfaces is not required

in the present application.

The unsteady potential chordwise forces can be deduced from program

output , as follows. For each structural mode and its downwash the

program calculates the complex amplitude of an associated distributed

lifting pressure difference on the rectangular planform, which in

dimensionless form for the jth mode is, per unit q
j 

having steady or

simple harmonic time dependence ,

Al’ (x,y) 8/i1 ~ - N M •
~ ~ ~ ( )

(7—1) ACP~ (x~Y) 
~pV

z — 
_ y 

~ ~ a~”f (y)g ~ (x)
v—i i—i

Here ~~~ are coefficient multipliers of the series expansion of

pressure on the planform, which can be listed in the program output .

The assumed spanwise pressure distributions are
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f l” - - -~~~. ~!U — — 
~~~~~~~~~~~~~ -v rw -

~~~

(7—2) f
(V)

(~~) — 
sin( 2 v— l) ~ , V — 1,2 , 3, . .  .N

a (7 — 3 ) 4) — cos ’(~ )

N — number of dowuwash chords on semispan

The assumed chordwise pressure distributions , dependent upon x only

for a rectangular planform , are

(7-4) g~~~(x) cot 1

sinQi—1)0 p 2,3,4,. . J ~I

-~1 x(7—5) 0 — cos ~

Ii number of downwash points on a downwash chord

where x is measured aft from the midehord .

The resultant chordwise component of potential airloads, acting

in the positive x direction , can be expressed as

(7—6) D (y;t) = — 
~pV

2 f ~ AC~ (x.v;t) ~~~ (x,y;t)dx - F5(y~t)

The first term represents the x—component of the force , which is normal

to the deflected chord , second term contains the contribution of leading—

edge suction . It is an idealization of linearized theory , which is

supposed to approximate the actual effects of low pressure acting around

a curved leading edge.

Steady and unsteady parts of the pressure and mean—surface chordwise

slope can be separated :
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(7—7) AC (x,y;t) = AC (x,y) + AC (x,y;t)p p0

(7— 8) -~--~-(x,y;t) = — 4 (y) — 4)1(y;t)

The first term of (7—6) will then contain a steady part, a linear

unsteady part, and a nonlinear part , as follows:

(7—9) D (y;t) = ½pV 2 I~~AC 
~~~~ 

dx

+ !~pV
2 !~‘~ (AC 

~l + AC 4 )dx

+ ½pV 2 
~~ 

AC 
~l 

dx — F (y, t)

The suction force likewise can be separated. The leading—ed ge inverse—

square—root pressure singularity strengths for steady and unsteady flow

can be defined,

(7—10) CF (y) -
~~ u r n  (—/ ~~~ AC (x,y)]

(7—11) CF (y;t) E -
~~ u r n  [— /~~ ~C (x ,y ;t f l

1 x-’-—b p1

From equations (5—9) and (5—10), the leading edge suction force in

terms of the vorticity singularity is

(7—12) F(y;t) = ,/‘i_M 2~~~ p ( u r n  (v~~~~y(x ,y;t))I2

where the effect of compressibility is now included with the Il—M2
a

f-actor (deduced from Eq. 12—1 of Ref. 26). Vorticity and pressure dis-

continuity distributions in the vicinity of the leading edge are related
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by (Ref. 23, Eq. (5—93))

(7—13) AC (x,y;t) = — - ( x ,y;t)

The suction force in terms of the leading edge pressure singularity

is, therefore ,

(7—14) F (y;c) = v1j~~~j~ flp{X Urn [— ?‘
~ AC (x,y;t)J}2

S a 4 p

= Il-Mi IIP{CF ~~ 
+ CF (y;t)}

2

- 

= v9~~~ 2 1Tp[C~~ + 2C~ CF1 
+ C~.

1
] ,

where (7—7), (7—10), and (7—11) have been used . Equations (7—9) and

(7—14) suggest that chordwise forces do affect both the steady disp lace-

ment solution and the linearized unsteady stability problem.

Actua l computation of the suction force contributions can be

accomplished through program output of the series coefficients

Insertion of (7—1) into (7—10) and (7—il), for the jth mode, leads to

the steady and unsteady leading—edge singularity strengths

/ 1  ~Z N
(7— 15) C~~~ ( y)  = — 2V[ ~~ 

~~~ 
a~~~f (y)]vc

m l  I N / ~ ~
(7—16) C’~ ’(y) = — 2V [ ”’ ~~“ 

~ a’-~ f~
V)
(~ )),,~

1 ~~~~ 
V

Here, in taking the limit x -
~ —b , only the p = 1 chordwise pressure

distribution terms from (7—4) remain since
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(7—17) u rn [ v c~~ g
’
~
’
~ (x) ] = .( ,1~~ p = 1

L o  p > 1

The single summations that define the modal spanwise leading—edge

pressure singularity strength can be arranged for computational purposes

(7-18) F~(y) = ~~~~~~ 

v~i 
‘
~~~~ f (V)

()

N
(7—19) F (y) = y E a9’ 1

(V/ ( )
I v=l ~~I

This notation , together with summation over all modes, allows the total

singularity strengths (7—10) and (7—li) to be computed by

(7—20) C
F 

(y) — 2Vvc E FO (y)q 0

0 j~~~ ~

(7—21) C
F 
(y,t) — 2V~c E F1

(y) q (t)
1 j

Insertion of (7—20) and (7—21) into (7—14) gives for the suction force

(7-22) F (y,t )  = 4llpV 2 b /i-W ([~ F0(y)qo]2

+ 2 E Z F~(y)q~ q
j
elWt f~(y)

+ [~ F1(y) q e
1Wt

l
2}

I -  -~

The notation of (7—18) and (7—19) is next adjusted to identify the

- - specific structural modes involved. For the steady problem a rigid

pitching mode must be used to solve for pressures and loads due to
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airplane angle of attack, and its associated singularity strength

parameter is denoted as . For the jth elastic torsion mode F,~
~V j

is used; of course, the vertical bending modes introduce no steady

lifting loads. Unsteady , leading—edge—singularity strength parameters

for the jth elastic torsion and bending modes are specified by

and F , respectively . The computational forts of (7—22) is then

~1

(7-23) F (y;t) = 4llpV2/l _ M2 {[F~a + ~ ~~ q° ] 2
5 a 

- V=~

n n
+ 2 ~ + E F° q° ] F  —i- e~~

t
a v=i~~v ~ v 

W
I 

b

~~F° q ° ]~ q eilUt

j =1 v=l v ~v ~ j  ~j

n n
+ [ (E F .g1 ÷ E F~, q~~ )0

1wt ] 2 }
j =1 I :1=1 1 1

The x—component of the ACp—force, as indicated In (7—9), must also

be expressed in a form which permits computation . Insertion of the

modal quantities

n
(7—24) = Z 

~A. q
V T t  ‘4’ V ‘44 V

(7-25) ACp AC~act + 

v~ 1 
AC~~ q

n
(7—26) = ~ ~~~ q~

“I ~‘I
n

(7—27) ACp
1 

Z ACp + E ACp
ci~ 

q~i— u wj  :1— 1 ~ 
-
~
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into (7—9) leads to

(7—28) D (y;t) — ½pV2{( Z 
~-b~~~’cz f~ dx a q°

p v—i v V

0

+ E E f~ ACp° f dx q q ] + [ E E f ~ ACPw f dx q
p— i v— l p ~v p V i—i v—i I ~v v

n n
+ ~ ~ f~~ ACp~ f~ dx q° q~i— i V—i I V ~ V I

+ E J~~ AC;a f dx cx q + E ~ f ~’ AC~ f dx q ° q ]e~~
t

— i—i I I—]. V— i V i ~~

n n
+ [ ~ E f ~~ ACp f~, d x — ~~~ q,~i_i i_i W

i 
‘V
j

n n b 2iwt
+ 

~~ ~~ 
~-b

Ac
~~1 

f~ dx q~ q~~ ]e — F (y;t)

where steady, linear unsteady, and nonlinear unsteady terms in the

generalized displacements are grouped together.

The chordwise integrals in (7—28) involving the steady and unsteady

modal pressures can be computed at any spanwise station by taking

advantage of the Rowe program ’s capability to compute sectional general—

ized forces. Program output is of the form

(7—29) Q~~
(y) = J ~~ ACp

1
(x ,y)H

i
(x,v)dx

where the deflection mode shape H
i

(x ,y) for all integrals in (7—28)

wil l b e f (y)

The nonlinear modal equations (4—9) for steady displacements must

be modified by substitution of the steady compressible lifting airloads

in place of the strip theory loads (4—3) . Inclusion of the steady
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parts of (7—28) and (7—23) will account for the induced drag caused by

the three—dimensionality of the flow . Generalized frlrces which will

appear in equations (4—9a) and (4—9c) are to be computed directly, but

the generalized forces for the chordwise bending equations (4—9b)

involve the chordwise forces described above and must be calculated

sepa rately . These preliminary calculations require the pressure

coef f icients a~j~ and sectional generalized forces obtained

f rom Rowe program output . Program output of generalized forces is of

the fo rm

( 7—30) 
~-ij 

= 
~D ~~ ACp

1
(x,y )H 1(x ,y)  dx dy

where H1
(x ,y) is the ith modal displacement and ACp

1
(x,y) the

pressure distribution per un it q
1

Rede rivation of (4—9 ) with three—dimensional subsonic steady air—

load s produces the following nonlinear system:

MPi q 
MP1 n n q

(7— 3la) II~N~ 
a 

~~~ 
- (T-l) 

cx 
p~ 1 ~ u”i~ ~

- 

p~~l u~ l ~~~ 
~~~~~~~ q~~ - ~~~ + E

~~ i v+2fl~~~~J = 0
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-- - -.v--v L-,-.... r v  ~,t~..—!_~~r -  
~~~~~~~~~~~~~~~~~~~~~~~~ ~ __ . — -xW-’,tcr ~II~~

0
TMPi MN n n

(7— 3 1b) IT’N~ U’ b 
— (t-l)  irz~ 

[ Z  E H
~~ 1 

q~ b
V

0

n n n
+ E E E R  0 0

v— i p—i i-u ijpv ~~ 
q~~ bp

1 ° t b
— 

~ ~~~ 
ACp~ dx] f4, ~~~~ 

(y)dy q a
v— i v V

n n
0 0E J 9~[ J .b AC °— 

0 —b P~ (x,y ) dx ]f ~ (y) f  (y)dy q~1 q~
u=l v— 1 p v I 11 V

(1 
~~ I 

< n)
n

+ 4 v i W(f ~ (F ” ) 2 f dy + 2  E r F U F O f d v a q °
v—i a 

~~~~ 

v
1 

-

n n
+ E E f~’ F ° F° f dv q q } — 0

p-i v-1 0 ~
p ‘

~v 
V

1 
- 

v

Mi MPI n n n q ° q~2 cx 
_ _(731c) ~ll2(j~ I) 

~~~~~ 
q~, + (T—l) a F E E E R

~~ij
V P

I v—i p—i i—i - b b

0 0

° q ° n n
pv~ i~~~

’
~ 

V
v q o 

— 
V ~t

— E E E R
v=l p-i i—i - Ti~~~~~ ~i p— i v-i 1

~~ 
b h 1

nb rn o c t +  ~— 
2II2~~ j+2n,o v—i 

j+2n,’*2n ~~~
;

~~~~I 
= 0

In (7—31) the notation ~~° refers to the steady generalized forces-I, j

co’~iputed directly by the Rowe program. Here 2n+l structural modes

must be used to compute generalized forces: n in vertical bending, n

in elastic torsion, and one rigid pitching mode.

Computation of the chordwise load terms in (7—31b) quickly becomes

an unwieldy task as n is increased, because of the profusion of

numerical integrations that become necessary (for n — 3 there would

be 75 in tegrat ions) .  In order to avoid extensive labor but s t i l l  re ta in
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the most significant effects of the potential chordwise forces, the

following simplifying assumptions are adopted . First, integrals

appearing in the first (j—l) chordwise equation of (7—3lb ) only are

retained . Second , only the pressure distribution and slope of the first

of the elastic torsion modes are kept; terms containing ACp~ or
i-i U

for p > 1 are dropped. Similarly, all terms containing F~ for
-‘-

U
p > 1 are removed . This approach should preserve the first—order

effect of steady chordwise potential forces, yet only five numerical

spanwise integrations will be required.

Actual computation of the remaining integrals

i~ [f~ ACP°(x~Y)dx]fq~~(Y)f (y)dy

!~~ [f ~~ ACp ° (x ,y)d x ]f ~ (y ) f  (y)dy
1

is done by direct calculation of the integrals over x as sectional

generalized forces with the Rowe program at eleven spanwise stations.

The spanwise integration is then carried out numerically. For the

three integrals

J~~[F~ (y)] 2f (y)dyvi

1 F~(y) F ° 
~~~~ 

(y)dy
1 1

.1~~~[F (y ) J
2
f (y)dy

I ~l

the summations implied by (7—18) are first made. This step is followed

by spanwise numerical integration.
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The nonlinear solution scheme described in Appendix C was straight-

forwardly adapted to compute steady deflections in subsonic three—

d imensional flow from (7—31). Since spanwise induction introduces

coup ling among the torsional modal equations , solution for linear dis-

placements as an initial estimate becomes an nxn linear matrix problem.

Equation (4—12) remains as the 3n x 3n linear unsteady modal

system for stability about the steady equilibrium position . It now

requires the generalized force matrix to be expressed for three—dimen—

siona l unsteady compressible flow. As for the steady case , the

gene r al ized  forces re la t ing pressures and disp lacements in the vertical

bending and torsion modes can he computed d i rec t ly  by the Rowe program ,

with reduced frequency and Mach number specified . Direct insertion Into

(4—12a) and (4—12c) is accomplished by the simple substitution , for

generalized forces and relating the same two modes ,

(7—32) — 

~~~~ ~h1

Even more so than for the steady airloads , complete inclusion of

a ll l inear unsteady po ten t i a l  chordwise terms in t roduces  a profusion

of integrals . Formally, the l inear unsteady terms which appear in

(7—28) and (7—23) enter into generalized forces , computation of which

involves spanwise Integrations of the terms ’ products with f

Practic ally , simp lifying assumptions of the type made for the steady

chordwise terms have been made to keep the number of numerical Integra-

t ions at a manageable l evel. Accordingly, only the first chordwtse

equation of (4—t2h) will retain the chordwlse force terms . Furthermore ,

onl y the cliordwise force integrals contain ing pressure contributions
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and displacements for the q , q , and q degrees of freedom will

~~~ 
W

1
be kept. (Justification of this approximation is based on the flutter

behavior observed in Chapter VI, which revealed little participation by

the remaining vertical bending and torsion modes.) The remaining linear

unsteady terms from (7—23) and (7—28) are

(t)

(7—33) D (y;t) ½pV2{f
b 
~
Cp
~ 

f dx q° —i
p 1~~~1

q (t)

+ t~Cp f dx q ~~ + f ~~ L~Cp~ f~ dx q~ q (t)w2 q 1 ~

+ ACp ° f~ dx a q~ (t) + f ~ t~Cp f~~dx q ~~ 
( t ))

q (t) (t)

+ 8llpV2/l-M~ fF° F cx —‘ + F ° F a
a a w b a w2 b

(t)

+ F~~ F a q~~(t) + F~~F q; ~~i

+ F F
~ 

q _~2L + F F~ q q~~ (t)}

The generalized force matrix terms for inclusion in (4—12b) are then

found to be

(7 34 ) 
~~~~~~ 

= 2flk~ Q ~~~~ ACp
~ 

(x ,y)dx1f~ (v ) f
~ 
(v)dv

— 
~~~ /iM~ (J F~ (y) F  

~‘~c (y)dva +f0~ F f dy q
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— 2l1k19. ~~
f f

~ I
~
CP
~ 
(x,y)dxJf~ (v)f (y)dy q

— -
~~~~

--- v~~ Ml f f ~ F° F f dv ~ + !~ F° F f dy q ° Ik 2. a o cx w
2 v

1 
- 0 

~ 
w2 v1 ~l

= 
2~~~ 4J~~~ ft~Cp~~ dx ] f ~ ~1 

dy cx

+ f ~ [ f .~ t~Cp~ dx]f f dy q
~ 

+ !
2.
[f~~ACp dx]f f dy q° }

‘
~~ 

V
1 ~~ ~~ 

v
1 ~~

— 
~~~~~~~ v’i—~~ {i~ F~ F~ f

~1
dy a + i~ F~ F

,~ 
f dy q }

All remaining terms in (4—12b) will be zero.

For a given reduced frequency, computation of these generalized

fo rces  invo lves program output for both oscillating and steady flow

conditions . Sectional generalized forces and pressure series coef-

ficients output by the Rowe program are used , in the same manner

described above for steady chordwlse loads , to compute (7—34). Integrals

for oscillating flow, of course , are complex . Nine comp lex spanwise

numerical integrations are needed for each k , whereas 126 would have

been required without the simplifying approximations. Two real integra-

tions in 
~1~ i l+2n 

involving steady pressures also appear in the

steady disp lacement solution .

B. Flutter Calculation Procedure and Results

Inc Ins ion of subsonic three—dimensional (3—fl) at rloads eliminates

a serious flaw of the strip theory loads used to o b ta i n  a l l  Chapter VI

results. This was the approximate spanwise l oad distribut ion , which Is

218 

_i_____ - -- —-— — 

— - - - c —



- ----—-- -———-- — -----———--——- —==—--- - - -----—--- — —- --.-——- .- -.- - - ,~ ..-~~~~-r , r . w w - - ?~ - -.-~~--. Yr_~ 
---- - — — 

—UI

most inaccurate near the tip. Leading—edge suction has been included

in the same manner as the Chapter V, Section D, analysis of 2—1) flow.

An effect which was neglected in the strip theory case , that of the

‘ x—component of the resultant pressure force normal to the deformed

chord (cf. Eqs. (5—18) to (5—20) is now retained. It is accounted for

by the chordwise terms which are computed with sectional generalized

forces. The influence of induced drag upon both steady deformations

and flutter stability should now be implicitly included by the modelinr~

of chordwise loads. Two parameters which must be specified in addition

to those mentioned in Chapter IV , in order to define a specific wing

are the aspect ratio (-~~) and Mach number.

The Chapter IV stability calculation method has been modified to

accept the subsonic 3—D steady and unsteady airloads derived in Section

A. Since these airloads are now externally generated , iteration of the

reduced frequency to find neutrall y damped eigenvalues is no longer

feasible. Generalized forces have to be computed beforehand , both for

steady flow and for oscillatory flow at preselected reduced frequencies.

Computation of steady displacements for a given angle of attack and

fli ght speed is accomplished as before , now based on Equations (7—31).

Then for each of the preselected reduced frequencies , the previously

calculated generalized forces (7—32) and (7—34) are input , the elgen—

value determinant (4—19) is assembled , and complex eigenvalues are

determined . For each of these there are an associated speed and damping

as shown by (2—25) and (2—27). The speed and damp ing of each flutter

mode are then plotted for all k , and a neutrally—damped speed ll
~

is determined by graphical interpolation . The procedure is repeated
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with a newly estimated U ; with care, U and U can be matchede e F

with sufficient accuracy after two such steps.

The expense in computer time to execute the Rowe program and the

additional effort required to prepare the chordwise loads make it

desireable to use as few as possible k values. Fortunately, all U

vs. g interpolation graphs proved to be quite smooth . Flutter speeds

accurate to three significant digits (sufficient) were reliably obtained .

The moderate—aspect—ratio wing whose stability boundary for 2—D

airloads appears in Fig. 6—7 has been re—analyzed using 3—D incompres-

sible aerodynamic theory . Figure 7—1 shows the results , compared with

the 2—D flutter calculations . The curve marked “100% suction” was

computed with the complete system (4—12), (7—32), and (7—34) whereas

that marked “0% suction” was found by repeating the analysis after

removal of all terms containing the singularity strength parameters

etc. in (7—34). This latter result thus represents the effects of
‘V 1

forces norma l to the deflected a i r fo i l  chord only in the dynamic equa-

tions . The coupling of fore—and—aft bending motions into flutter by

the leading edge suc t ion  fo rces is therefore  absent in the “0% suction ”

case.

The 2—D stability boundary involves the aerodynamic loads of

(4—18), which actually do not account for suction . The effect of model-

ing the suction force, as derived in Section C of Chapter V, is shown

by Figs. 6—35 and 6—36. These plots suggest that , if a stability

boundary had been determined with suction accounted for , the 2—fl curve

in Fig. 7—1 would show less influence of steady deformation and would

not drop below U — 7 . The solid , 3—D curve does, of course , account

for suction .
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Comparison between the 2—D and 3—D flutter speeds is also made

more difficult because they involve different steady aerodynamics. In

order to minimize differences of this kind , the steady tip deflection

was judged to be the best common measure of steady airload effects.

Inspection of Fig. 7—1 affirms that the influence of steady

deformations upon flutter is not just governed by elastic bending—torsion

coupling but is also sensitive to the manner in which the potential

aerodynamic loads are applied to the fore—and—aft degree of freedom .

Even though the chordwise force components represent tilting of a

relatively large, approximately vertical resultant force vector , they

are seen to have a significant stabilizing influence. This conclusion

follows from comparing the “100% suction” and “0% suction” curves . Any

analysis of this type will obviously be sensitive to the way in which

chordw’ise forces are accounted for.

The influence of compressibility is next explored by repeating the

foregoing calculations with airloads computed for Mach numbers of .6

and .8 . Results are shown in Fig. 7—2. Strictly speaking, this

procedure involves an inconsistency, since Mach number is held fixed

while velocity is freely varied. The type of calculations required to

model properly a wing at high subsonic speeds would require iterative

matching of Mach number and speed U~ for a given flight altitude.

This refinement is deemed to be excessively costly in both computer

time and effort. Nevertheless , the results of Fig. 7—2 provide inter-

esting qualitative information on Mach number effects.

As Ma is increased , the decrease in flutter speed with steady

deformation for the “0% suction” case becomes less pronounced. The
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results for “100% suction” show less sensitivity to Mach number. In

either case, no adverse e f fec ts due to compressibility upon flutter of

a lifting wing are revealed , other than those associated with a modest

decrease in U with increasing MF a

When extending this analysis to higher subsonic Mach numbers, it

must be remembered that the only aerodynamic loads being included are

those which arise from inviscid , f i rst—order , small pe r turbat ion steady

and uns teady theory for  planar lif ting surfaces. Induced drag is present,

as discussed above, but all chordwise forces which arise from either

direct viscous shears or from modifications to the pressure distribution

due to the presence of a boundary layer are not modeled. Yet viscous

e f f e c ts of this type become increasingly more pr onounced as f l i ght

speeds approach the transonic reg ime and/or as mean angle of attack is

increased .

The chordwise laods associated with direct viscous shear should not

contain a significant unsteady component , at least at the lower reduced

frequencies encountered here . It is expected that they will produce a

steady dr ag force aligned with the airfoil section . By contrast , the

chordwise po ten t ial loads represen t the hor izon tal componen t of a

relatively large resul tant  circulatory lift vector. Tilting of this

vector can introduce unsteady chordwise loads of considerable magnitude.

Indeed their importance in aeroelastic stability is suggested by

comparison of the 100% and 0% suction curves in the figures.

Since viscous shear should cause a predominantly steady drag loading,

qualitative information regarding its effect on flutter can he inferred

from the strip theory studies of Chapter VT involving the drag parame ter

222 

- - - - - - - -- - - - - 

~~~~ -~



- - -~~~~~~~~-~~~~~ - - - _-

~~~~~~~

-- -

~~~~~~ 1

C. For example, no substantial alteration of the dependence of flutter

speed upon steady lift should be expected from including this additional

drag term. The effect of unsteady viscous contribu..1ons to aeroelastic

* stability has not been considered anywhere in this investigation . The

mere prediction of unsteady viscous chordwise loads is still regarded

as an open question for experimental and analytical research, especially

when turbulent boundary layers are involved.

As a final case, the large—aspect—ratio example of Fig. 6—13 has

been reanalyzed . Aspect ratio is fixed at 20 and Mach number at 0.

Results are shown in Fig. 7—3. Interestingly, the zero—lift flutter

speeds for 2—1) and 3—D flows are nearly the same: of course , strip

theory is expected to be more accurate for the larger aspect ratio.

The difference between the 2—D and 3—D (with suction) stability

boundaries is actually deceiving, since (as already mentioned) the 2—D

results do not contain the improved modeling of the suction force from

Chapter V. Figures (6—37) and (6—38) suggest the stabilizing effect

which introducing suction would have upon the 2—fl curve in Fig. 7-3.

The key observation here is that the same type of instability , involving

substantial participation of the fore—and—aft bending degree of freedom

observed for 2—D aerodynamic loads, is still observed after 3—1) aero—

dynamics are introduced, Also the influence of steady deformation upon

flutter speed remains appreciable. Removal of the unsteady suction

terms decreases stability, much as was observed for 4~. = 10 in Fig. 7—1.

Points on the stability boundary for a ~Z .005 could not be found

reliably because of the extremely light damping in this region:

approximate curves are shown by dashed lines.
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- In conclusion, the results found in this chapter seem to confirm

that the phenomena analyzed extensively in Chapter VI are still observed

when the strip theory airloads are replaced by airloads from 3—D

aerodynamic theory. Furthermore, the role of chordwise forces due to

leading edge suction has been found to increase the aeroelastic stability

of a wing undergoing steady deformation due to lift.

I
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10. A 2-D AIRLOADS

o 3 D  AIRLOADS :

100% suction
- 

0% suction

0. a = .oi
.02

8.
.04

0. .06
UF .01

7. 
— N06

04N
N .06

6.

5.

0. 1. 2. 3. 4
I wol
j  b J y= .~

FIGURE 7—1 Flutter Speeds as Influenced by Steady Deformation ,
Moderate—Aspect—Ratio Example of Fig. 6—7 with Ak — 10
and M = 0a
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A .6

9 0 .8

~~

~s ~~~~~06
-04 •4,~,.

6. -

5. - 
______ 100 % suction

— — — 0% suctiO n

0•T 
11 

WO
b y =j

FIGURE 7—2 Flutter Speeds as Influenced by Steady Deformation at
Three Mach Numbers; Wing of Fig. 7—1
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Chapter VIII

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are drawn from the variety of results

obtained in this investigation.

1) The influence of steady drag on flutter speed changes from favorable

to unfavorable as aspect ratio is increased. The frequency of the

second transverse bending mode decreases, tending toward the funda-

mental bending—torsion flutter frequency, as aspect ratio is

increased.

2) The prediction of the influence of steady drag upon flutter is not

substantially altered when steady deformations due to lift are

considered. The major effect of steady drag is to reduce divergence

speed, especially for large aspect ratios.

3) When a wing has such a large aspect ratio that its fundamental

fore—and—aft bending frequency is less than the frequency of bending—

torsion flutter at zero steady lift,an instability associated with

chordwise bending occurs. The critical speeds are lower than the

zero—lift flutter speed when any steady lifting deformation is

present. This type of flutter can disappear at small steady deflec—

tions when realistic structural damping is introduced , but for

reasonably large displacements it can still occur.

4) Steady deformations decrease flutter speed and flutter frequency .

The effect is most pronounced when the fundamental fore—and—aft

bending frequency is near the zero—lift bending—torsion flutter

frequency.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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5) The aeroelastic phenomena predicted using incompressible strip—

theory airloads are also observed when three—dimensional , compres-

sible subsonic airloads are employed.

6) The inclusion of unsteady leading—edge suction forces moderates

the predicted decrease in flutter speed due to steady lifting

deformations.

7) In subsonic compressible flow, with unsteady potential chordwise

forces, there seem to be only slight adverse effects of Ma on

flutter when steady deformations are present.

One of the predictions of this study is that a high performance

sailplane undergoing a limit load factor pullout from a dive could

encounter flutter or divergence at lower speeds than might be antici-

pated from a con~ientional aeroelastie analysis. The increased steady

drag which accompanies higher C
L would reduce the divergence speed

considerably, while the deformation of the flexible high—aspect—ratio

wings would change the dynamic aeroelastic stability as well.

The present analysis could be refined still further. Nonlinear

aerodynamic effects deserve further attention. Higher mean angles of

attack would lead to increased importance of the turbulent boundary

layer, culminating in separation (stall), which will alter the stabiliz—

ing contribution found due to leading—edge suction in attached flow.

Vehicles intended to operate at the higher subsonic or low tran—

sonic speeds (certain RPV ’s or missiles could still be designed with

the straigh t wings considered here) are expected to encounter various

phenomena which could greatly affect the chorduise loads . Viscous
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1:
shear, boundary layer modification of the flow, and thickness effects

with the appearance of shocks will all modify the aeroelastic behavior.

Finally, the transonic and supersonic flow regimes, where drag

loads are considerably larger than at subcritical speeds, remain largely

uninvestigated. In these ranges different structural and aerodynamic

configurations are likely to be involved.
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Appendix A

THE ASSUMED MODES

I. Bending

The natural mode shapes and frequencies in bending of a uniform

beam of length 9. are found by seeking homogeneous simple harmonic

solutions of

E I w”+mi~~= Ox

Letting

i~itw = W e

the general solution is

W = A
1 sin /~~y + A 2 cos fty + A 3 sinh /~~

y + A
4 coshft

y

El2 xwhere a =—
m

Application of the bending boundary conditions

f 
W(O) — w’ (0) = W”(9.) = w” (9.) 0

results in a trancendental equation for the natural frequency eigenvalues

1cos i— 9.. = — ______

w
cosh —

a

which are for vertical bending

(A—i) (A) — 112
N~ ~~~~~~~ I — 1,2,3,... 

-
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The trancendental numbers N1 for 1 < i < 5 are

N1 
= 0.596864162695

N2 = 1.494175614274

(A—2) N3 = 2.500246946168

N4 
= 3.499989319849

N5 
= 4.500000461516

and the corresponding eignevectors yield the vertical bending natural

modes

r sin N It - sinh N Tt~
(A—3) = L cosh UN 1 + cos UN1) 

(sinh JIN
i~ 

— sin UN
1~
)

+ cosh IIN~~ 
— cos T1N1~ ]

expressed in orthonormal form so that

J , f~, (~ )d~ 1
i

The modal property B
1 in the steady equations (4—9) is related to

the modal integral

rsin ,rN - sinh i~N 1 B
(A—4) o 

~~~~ 
= — 

~j~~ y Lcosh lrNi + cos ,rN1 j — 
2

Fore—and—aft bending natural modes f are the same as in (A—3) ,

however the natural frequencies are

(A-5) = IT2N~ 
~~ ~~
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The f are illustrated in Fig. A—i for 1 < I < 5
W

I 
— —

2. Torsion

Natural mode shapes and frequencies in torsion are simply

(A—6) f~ — sin fl(j—½)j
j

(A-7) = f l (j -½)  
~~

which result from the elementary Sturm—Liouville problem for torsion

of a uniform rod. These modes are not normalized since

f
~~~ f

2 
(~ )d~ = ½
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Appendix B

CALCULATION OF MODIFIED BESSEL FUNCTIONS

The modified Bessel functions K (s) and 
~~~~ 

appearing in

the expression (5—1) for the generalized Theodorsen function can be

computed by using the following ascending power series expansions,

drawn from Abramowitz and Stegun (Ref. 26, Equations 9.6.10, 9.6.11,

and 9.6.13).

- 1
(B—i) I

~
(s) = (i

;

)

V 

~~~~~~ 

j!F(v+j+1)

(B-2) K ( )  = - Un(½ ) + ‘
~e~~o~~~

+ (p)~~ 
+ ~~~~~~~ 

(¼z~~ + (l+~4)~~~~~ +

(B—3) K
1
(~~) = ½ (½ )~~~ +

~7 2 i
- ½(½ )~~~~~~~~~ {~~~~

(j + 1) + ~(j + 2)}

where -

r(v + 1) = v !

~p(l) = —
e

~~v ) = - y  + E j~
1 

, ‘. > 2
e 

~~~~~

~e 
= 0.5772156649... (euler’s constant)

No convergence difficulties with the power series expansions were

encountered over the range of s that occurred in this investigation .
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Simple harmonic airloads involving the Theordorsen function of reduced

frequency C(k) were computed by the same procedure, simply by the

substitution s = 0 + ik
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Appendix C

SOLUTION FOR NONLINEAR STEADY DISPLACEMENTS

With the vector of generalized displacements defined as

(C—i) q°

the nonlinear equations (4—9) can be expressed,

(C—2) F(q °) = 0

where

(C—3) F = {F ,...P ,F ,. ..,F ,F ,...,F }
T

__ W
n “1 V

n *1

Let an initial estimate q° be found by solving the linear steady

equations (4—20), then linearize F about q
~0) 

by first—order Taylor

series,

(C—4) F(q °) = F(q° ) + [J(q° )](q° — q ° ) + H.O.T.
-w -~~ ~~o) ~~(o) — ,...(o)

The Jacobian matrix 
- 
3 contains partial derivatives of the F’s with

respect to the q°’ s evaluated at q(0) ; its elements are shown in

Pig. C—i. Equation (C—4) can be used to solve for 
~~~1) i~o)~ 

by

the linear approximation

(C—5) F(q ° ) + [J(q ° ) ] (q ° — q° ) = 0_ (o) .
~..(l) ~.(o)

and the first iteration solution is

(C—6) q° — (q° — q° ) + q°
.....(l) _( ) .(o) ~.~

(o)
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This process Is repeated until satisfactory convergence La achieved,

with the general jth step given by

(C—7) [J(q
~J)

) ]( q~~~1) — q
(~~)

) — F (~~~~)
)

..~.Aj+l) 
= 

~5..(j+l) ~~ (-i)~ ~~~~~

In practice, more than four or five iterations rarely were required,

for cases near static divergence speeds.
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h
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R
1~~~ q~~ ~~~

w MPi n
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( 1)Z Hj , i-I-n 
— 

~q° 
— — 

bU’ T— 
\)1 

\)ji 
q~~

1

MP1 fl n n
5
j,i+2n ~~~q;

J = - (T-l) [Z - 2 
u:l ~~~ ~~~~~~~ 

q —
~~~~] -

v MP1 n
3j+n,i 

= 
~q 

= - 

bU z CT-i) 
\)l 

H
~jj  q

MPi MPi n n
1

j +n,i+ ~ 
= 
9q;

J = TTIkN~ bii~ ~~ 
- CT— i)  

bU’ \)l p~l 
R
11~~

g~ q~

~
F
v iipi n n n q

~
j+n,i+2n = 

3q 
— Cr-I) 

~~~~ 
( ER~~~~.~ 1A+ 2 

~~~ ~~~~~~~~ 
q~ ~~~~~~~~~ 

+ 2a7
1~

3F~ MPi n n 
q 

fl
3j+2n,i+n 

= ~q0~ 
= (r-l) bU~ 

[— 2 Z  R
~.1i~j ~~ 

— Z H
I\,i 

....
~~~ ]

3j+2n,i+2n - ::~ 
= (½U2 (j _ ½) 2 

~~~~ - A)6~~ 

e
n n n n

+ CT-i) 
~~~~~ 

f E  Z R~~~1 1~ ~~ ~~~ 

R~~~1—g~ 
.~~Lj

H ~ij  (i=j)
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FIGURE C—i Elements of the Jacobian Matrix
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cantilever wing.  Resu l t s  of th is  anal ysis are believed to have pract ical  app l i ca t ions  for
high—performance sail pianes and certain RPV’ s. The airfoi l  cross section is assumed
to be symmetric and camber bending is neglected . Motions in vertical bendin g, fore—and—
a(t bending, and torsion are considered . A dif ferent ia l  equation model is developed , — 

-

which included the nonlinear elastic bending—torsion coup ling t h a t  accompanies  even
moderate deflectioris. A linearized expansion in small t im e—dependent  deflections is made -
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~~ ~ tout a steady f lL g ht  condition . The stabi l i ty  de t e rminan t  of the  l inearized system then

c~tn t a ins  coefficients  that  depend on steady disp lacements .  Loads derived from two—
dimensional  incompressible aerod ynamic  theory are used to obtain the majori ty of the
results , but cases using three—dimension al  subsonic compressible theory are also studied
The stabil i ty anal ysis is carried out in term s of the dynamica l l y uncoup led natural  modes
of vibration of the unifor m canti lever  .,~.Dynamic s tabi l i ty  in the case of incompressible
stri p—theory airloads is determined in ’t’kro ways.  One is the “V—g method” familiar  to
aeroelasticians. When steady deformatio’~s are present this method requires an iterative
matching of f lut ter  speeds with estimated ~~eed . The second approach involves determi-
nation of the comp lex eigenvalues of the aei~~elast ic modes at any desired flig ht condition .
The aerod ynamic loads are expressed in teriI~t~s of the generalized Theodorsen funct ion;
eigenvalues of the aeroelastic system are Ioca\ed wi th  a gradient search techni que .
The effect of stead y drag on f lu t t e r  of nonI i ft in ~~wings using incompressible stri p—theory
is studied and shown to correlate with previous f ~ known resul ts .  Next , the inf luence of
stead y l i f t ing  deformations on flutter is investigat ~d , and flutter modes are found that
involve fore—and—aft bendin g motions.  The signifi~ance of unstead y leading ed ge suction
forces , which are predicted by the two— dimension a\ incompressible aerod ynamic theory ,
is then examined . Two idealized examples based upon ex i s t ing  sail p lanes are anal yzed .
Stead y drag loads lower the f lu t te r  speed for larger aspect ratios but increase it for
aspect rotios less than a certain value . Divergence speed is more sensitive to steady
drag, and for very hig h aspect rotio wings it can fall below the bendin g—torsion f lut ter
speed . Stead y deformations due to l if t  a lways decrease the f lut ter  speed by an amount
dependent upon the aspect ratio and the fore—and aft bending s t i f fness .  Leading—edge
suction forces increase f lu t ter  speed . Three—dimensional  stead y and unstead y airloads
are introduced into the V—g f lut ter  anal ysis scheme , and for a Mach number  of zero the
role of steady l i f t ing deformations and unstead y leading—ed ge suction forces is more
accurately determined . The behavior predicted using strip theory loads i s aga in observe
and the suction forces are confirmed to contr ibute a signif icant  stabil izing ef fec t .  Furthe
calculations using hig h subsonic Mach numbers  reveal onl y mild effects  due to corapressi—
bility (disregarding unstead y cordwise loads of viscous origin) .
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